PROBLEM 6.
An icosahedron is given. It is a regular polyhedron. Its sides are numbered from 1 throught 20.

The icosahedron should be routed so that to reach each side only once.

The route cost C is defined by the scalar product:

$$
\mathrm{C} \underset{\substack{ \\=\\ i=1}}{20} \mathrm{SUM} \mathrm{i} \text { fi }
$$

where fi is the number of the side which is reached in the i-th step.

One may pass from one side to another only if these sides are adjacent.
A. Two sides will be adjacent if there exists a common edge;
B. Two sides will be adjacent if there exists a common edge or a common point.

Find the routes with minimal costs for the cases given above.

Remark:
If for time or space complexity of the algorithm you may not find the exact solution you could propose a satisfactory one.

