
PROBLEM 1.

Program the process transforming figure arrangement in A

into that in B. A figure in a cell can be transferred

into any one of neighbouring empty cells; in the case of

such transformations the cell previously occupied by the

figure becomes empty.

+----+----+----+----+

| 7 | 3 | 5 | 14 |

+----+----+----+----+

| | 4 | 9 | 13 |

+----+----+----+----+ -------->

| 1 | | 2 | 10 |

+----+----+----+----+

| 11 | 8 | 12 | 6 |

+----+----+----+----+

 A

 +----+----+----+----+

 | 1 | 2 | 3 | 4 |

 +----+----+----+----+

 | 5 | 6 | 7 | 8 |

 +----+----+----+----+

 | 9 | 10 | 11 | 12 |

 +----+----+----+----+

 | 13 | 14 | | |

 +----+----+----+----+

 B

PROBLEM 2.

The game of "BOXES" involves players joining dots in a

gird one at a time. The player who completes a box scores

a point and is entitled to another turn. The end of the

game is when the grid has been completed with the winner

naturally being the one with the more points. Only

vertical and horizontal lines filling the space between

two points are allowed.

The example below shows a game between Red and Blue which

is half completed:

o----o o----o----o

| | | | |

o----o----o----o----o

| |

o o o o----o

|

o----o o----o o

 | |

o o o o----o

This can be represented with R & B showing lines filled

by Red and Blue with O indicating a 'vacant' line:

 R O B R

B R B B B

 B B R R

R O R O O

 O O O B

B O O O O

 B O R O

O R O O R

 O O O B

This is then condensed to produce the matrix shown below:

ROBR

BRBBB

BBRR

ROROO

OOOB

BOOOO

BORO

OROOR

OOOB

1. Write a program which scans a matrix of the type shown

 above (which will ALWAYS represented a 5 x 5 point grid)

 and determines the number of 3- sided boxes (of ANY

 orientation). Data should be read from a single file as a

 series of 9r lines representing r games which is

 terminated by the word END starting a separate line. Your

 program should output a one line message for each matrix

 in the data:

 MATRIX r contained x 3-sided box(es).

2. Modify your answer to Part 1 to continue a single game

 on behalf of Blue. Complete as many boxes as the single

 move allows (bearing in mind that a complete box means

 another move). The final move is irrelevant but should

 NOT result in a 3-sided box unless forced to do so.

 Your program should return:

 x boxes have been completed. Final move = L, C where L &

 C are the Line and Column representing the character in

 the matrix and x should be the number NEW boxes which

 have been formed, but NOT the total number of complete

 boxes in the grid.

*** PROBLEM 3.

There are N books and two readers, A and B, wanting to

read these books. Nonnegative integers A[I] and B[I] are

given such as reader A (or B) needs A[I] (or B[I],

respectively) hours to read book I, 1<=I<=N. Both the

readers begin reading at time 0. At any time each reader

is allowed to read at most one book and both readers

cannot read the same book.

Integer K, 2<=K<=N, is given and the books are supposed

to be numbered in such a way that no reader can start

reading book J, 2<=J<=K, until book J-1 is read by both

the readers.

The order of reading the other books is immaterial for

each reader and may be arbitrary.

Preemptions are allowed in the process of reading any

book by any reader. It means that this process may be

interrupted at any integer time and be resumed lately

starting from the point of interruption. In between

interruption and resumption of the process of reading the

book a reader may read any other book he has not

completed and has the right to read it.

IT IS NECESSARY:

1. To organize inputting the data in the form:

 < ENTER N --> >

 < ENTER K --> >

 < ENTER: >

 < A[1] --> > < B[1] --> >

 < A[2] --> > < B[2] --> >

 < A[N] --> > < B[N] --> >

2. To find the largest possible time T before which all

 the books cannot be read by both the readers; to output

 calculated value of T.

3. To build a schedule of reading the books by each

 reader which meets all the restrictions listed above and

 under which the process of reading all the books

 terminates at time T. The schedule for each reader is to

 be written in the form.

 < SCHEDULE FOR READER A (or B) >

 < Book > < Start > < Finish >

 In the tables of the above form all the time intervals

 within which reader A (or B) is reading a book and the

 number of this book should be mentioned.

4. Output the number of preemptions of each reader. Try

 to reduce the number of preemptions for each reader.

PROBLEM 4.

It's given integer number K.

A strip of paper is divided into N cells (K<=N<=40). Two

players choose and cross out K empty adjacent cells one

by one. The winner is the one who has made the last move.

 1 2 N

+----+----+----+----+- -----+----+

| | | | | . . . | |

+----+----+----+----+- -----+----+

1. Input N and define, whether player 1 has winning

 strategy (i.e. whether he can win under the best

 following moves of player 2). Print message "Player 1 has

 winning strategy" or "Player 1 doesn't have winning

 strategy".

2. Define for given N, if player 1 has winning strategy,

 if his 1st move is entered into the computer from

 keyboard.

3. Make the game for given (paragraph 1 and 2) N and

 player's 1 first move. Programme plays for player 2.

 Moves of player 1 are entered from the keyboard.

 Move is given by index of cell L (1<=L<=N-K+1). Cells

 from L till L+K-1 are crossed out while doing this. After

 each move current position of the game is printed out in

 the form of:

 1 2* 3* ... N

 Index number is printed upside, crossed out cells are

 marked by symbols '*'.

 You must print 'Victory of Player 1 (Player 2)' when the

 game is over. Entering N and K print message 'N>' and

 'K>'.

 Entering move print 'Move of Player 1>'.

 Foresee the control of correctness of input data.

PROBLEM 5.

 [PROLAN/M]

Suppose that the NePhihhan hardware company has developed

a new RISC micro-processor capable to handle a single

data type - string of characters - and to perform a

single operation on them-context-sensitive replacement

(searching a given substring in a string and replacing it

by another substring). Two memory areas are used, one of

each contains the program (a list of discriptions of the

possible replacements), while the other one (we will call

it R; its size is supposed to be virtually unlimited) is

used to store the input data, the intermediary results

and the final output.

The programs for the processor are written in a language

which we will call PROLAN/M. Before we describe it

formally, we will give an example of a program:

(aa,b) (ba,a) (bc,a) (c,start) (d,) (b,finish) (,)

When executed string abcabcd

as input, the programs yields the string finish

as a final value, while the contents of R goes through

the values

 abcabcd, aaabcd, babcd, abcd, aad, db, b, finish

successively.

Now to the formal description of the syntax of PROLAN/M

(we use "::=" to denote "is defined as" and ":" to denote

"or"):

<'PROLAN/M'-program> ::= <substitut.sequence>(,)

<substitut.sequence> ::= <substitution>:

 ::= <substitut.sequence><substitution>

<substitution> ::= (<left part>,<right part>)

<left-hand part> ::= <string>

<right-hand part> ::= <string>:<empty>

<string> ::= <string symbol>:<string><string symbol>

<empty string> ::=

<string symbol> ::= <any ASCII character except ','

, ')' >

After the input string has been loaded into R, the

program is executed in the following way: the processor

looks for the first <substitution> in the

<substitut.sequence> for which the <left-hand part> is a

substring of the string in R. If the search is

successful, the <right-hand part> of the same

<substitution> replaces the corresponding substring in R

(the leftmost one if not unique). This procedure is then

repeated from the beginning with the new R-value until mo

<left-hand part> in the <'PROLAN/M'-program> is found as

a substring in a current value R, which is then

considered to be the final result, and the execution is

aborted.

Problem 1.

 Write and debug a PROLAN/M program that converts a string

 of the type

 <nat.nr1>+<nat.nr2>=?

 (<nat.nr1> and <nat.nr2> are sequences of decimal digits

 representing natural numbers) to a string of the type

 <nat.nr1>+<nat.nr2>=<nat.nr3>

 containing a mathematically correct statement (<nat.nr1>

 and <nat.nr2> are the same). For example, the string

 1990+123=?

 should be transformed into

 1990+123=2113

 at the end of the execution. Store your program in a file

 named SUM.PRM.

Problem 2.

 Write a PROLAN/M debugger. It should able to do the

 following:

 (a) request the name of a text file containing the

 PROLAN/M program;

 (b) request the initial contents of R;

 (c) perform the transformations of the input string

 according to the program in the file;

 (d) display the result on the screen;

 (e) it is desirable to enable a tracing mode.

Your grade for P.1 will depend on the number of

<substitutions>s in the <substitution sequence>, as well

as on the speed at which the tests which will be given by

the jury will be performed. Therefore you may wish to

hand in two versions of the program, each of which will

be better at satisfying a different criterion.

The program from P.1 will be tested using a programming

system designed by the jury for this special purpose.

Your grade for P.2 will depend on passing the jury's test

and on your having implemented all the subproblems.

PROBLEM 6.

Given integers a and n (n<100). Suppose an imaginary

programming language containing an assignment statement

and a multiplication operator. Write a program that

generates a text in that language for computation of

b=a^n, with minimal number of multiplications. An example

of generated text for n=13, where each pair of brackets

{} contains comments, is presented below:

X1:=a; {=a}

X2:=X1*X1; {=a^2}

X3:=X2*X2; {=a^4}

X4:=X3*X1; {=a^5}

X5:=X3*X3; {=a^8}

X6:=X5*X4; {=a^13}

b:=X6;

