
TASK 4.1.1: "MYSTERIOUS CONTINENTS"

===================================

A MAP is a 48 by 16 rectangle of COORDINATES. Two coordinates are

CONNECTED if they are neighbours either in south-north or in east-west

direction. Initially each coordinate is only known to be either WATER

(W) or GROUND (G).

There are four GROUND TYPES (GT): G, M, P, and C.

And there are four WATER TYPES (WT): W, O, B, and L.

It is assumed that outside the map there is OCEAN (O).

There are certain geographic rules for changing the type of a

coordinate (RELABELING). It may become a:

- MOUNTAIN (M): If a GT is connected to 4 other GT.

- PENINSULA (P): If a GT is connected to 3 WT,

 or to 2 WT and at least 1 P,

 or to 1 WT and at least 2 P.

- COASTLINE (C): If a GT is not M and not P.

- OCEAN (O): If a WT is connected to at least one O.

- BAY (B): If an O is connected

 to at least 2 B and at most one O,

 or to 1 B and at least 2 GT,

 or to at least 2 GT and at least one O.

- LAKE (L): If a W remains unchanged till no other relabeling is

 possible any more.

It may happen, that after a certain coordinate has been relabeled,

it can be relabeled once again later, because the types of some

neighbours have changed in the meantime.

A map is EXPLORED if no relabeling is possible any more.

PROBLEM STATEMENT

=================

Implement a program which does the following in that order:

1. Read a map of an unknown continent from an ASCII input file and

 display it on the screen, together with the initial coordinate

 type statistics, as shown in Example-1.

2. Explore the map and relabel the coordinates correctly with

 M, P, C, O, B, or L according to the geographic rules.

3. Display the explored map on the screen, with the final coordinate

 type statistics, as shown in Example-2.

4. Write a screen copy showing the explored map and the final

 coordinate type statistics to an ASCII output file.

TECHNICAL CONSTRAINTS

=====================

Constraint-1: Put your solution program into an ASCII text file named

 "C:\IOI\DAY-1\411-PROG.xxx". Extension .xxx is:

 - .BAS for BASIC programs, .C for C programs,

 - .LCN for LOGO programs, .PAS for PASCAL programs.

Constraint-2: The name of the ASCII input file for reading an unknown

 map from must be "C:\IOI\DAY-1\411-MAP.IN".

Constraint-3: The name of the ASCII output file for writing explored

 map and statistics to must be "C:\IOI\DAY-1\411-MAP.OU".

EXAMPLE(S)

==========

Example-1: The screen display, including initial statistics, of the

 unknown map in file "C:\IOI\DAY-1\411-MAP.IN" should look like:

WW

WW

WWWWWWWWWWWWWWGGGGGGWWWWWWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWGGWWGGWWWWWWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWGGGWGGWWWWWWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWGGWWGGWWWGGGWGWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWGGGGGGGGGGGGGWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWGGGWWWGGWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWGGGWWWGGWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWGGGGWWGGWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWGGWWWGGWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWWGWWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWWGWWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWGGGWWWWWWWWWWWWWWWWWWWWWWW

WW

WW

MYSTERIOUS: G=61 W=707 ALL=768

Example-2: The screen display of the explored map, including final

 statistics and the file "C:\IOI\DAY-1\411-MAP.OU" should look like:

OO

OO

OOOOOOOOOOOOOOCCCCCCOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOCCLLCCOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOCMPLCCOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOCCLLCCBBBCCCBPOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOBCCCCCCCCMCCCCBOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOBCMCBBBCCOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOCMCBOOCCOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOCMMPOOCCOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOBCCBOOCCOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOBPBOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOBPBOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOPPPOOOOOOOOOOOOOOOOOOOOOOO

OO

OO

EXPLORED: P=8 C=47 M=6 O=685 B=17 L=5 ALL=768

SAMPLE FILES

============

We provided these correct example files for your convenience:

"C:\IOI\DAY-1\411-MAP.IN" and "C:\IOI\DAY-1\411-MAP.OU".

WARNING: Successful execution of your program with Example-1 above

does not necessarily guarantee that your program is correct !!!

CREDITS

=======

Read from a file and display unknown map correctly 5 points

All Mountains correctly relabeled with M 10 points

All Peninsulas correctly relabeled with P 20 points

All Coastlines correctly relabeled with C 5 points

All Ocean correctly relabeled with O 10 points

All Bays correctly relabeled with B 20 points

All Lakes correctly relabeled with M 5 points

Initial Statistics correct 5 points

Final Statistics correct 10 points

Structure of output file correct 5 points

Technical constraints completely obeyed 5 points

--

 maximal 100 points

TASK 4.1.2: "A MAZING WORKSHOP"

===============================

A MAZE completely covers an AREA of N times M squares. It consists

of many WALL squares and of many SPACE squares, the latter of which

include one ENTRY square and one TREASURE square.

A PATH is a sequence of adjacent space squares (bounded by walls) from

the entry to a dead end, we refer to as an ENDPOINT. The LENGTH of a

path is the number of squares it covers, including entry and endpoint.

The maze must be such that paths may fork but do not join, so for

example no two paths can have the same endpoint. The entry is located

somewhere at the top of the maze. The treasure is positioned at the

endpoint of a path with maximal length.

The N times M area should be covered with paths as much as possible.

It is nice to watch a maze growing over an area while it is computed.

Because the algorithm is too fast for the eye, a DELAY TIME after

each drawn square is necessary.

PROBLEM STATEMENT

=================

Implement the following set of TOOLS dealing with mazes. The tools

should be executable in any order and repetition through a main menue:

Tool-1: Set the main maze parameters N and M interactively.

Tool-2: Set a DELAY TIME interactively.

Tool-3: Compute a new correct maze basically using a random

 generator and display the maze while it is growing.

Tool-4: Write a generated maze and its size parameters to an

 ASCII text file, exactly as it is shown in Example-2.

Tool-5: Read an unknown maze from an ASCII text file

 and highlight the path from entry to treasure.

TECHNICAL CONSTRAINTS

=====================

Constraint-1: Represent each square by a two-character string:

 - walls by two times ASCII character #219 "[["

 - paths and entry by two blanks " "

 - treasure by T and blank "T "

 - highlighted paths by full-stop and blank ". "

Constraint-2: N and M must be greater than 2 and not larger than 20.

Constraint-3: Put your solution program into an ASCII text file named

 "C:\IOI\DAY-1\412-PROG.xxx". Extension .xxx is:

 - .BAS for BASIC programs, .C for C programs,

 - .LCN for LOGO programs, .PAS for PASCAL programs.

Constraint-4: The name of the ASCII text file for reading and writing

 mazes must be "C:\IOI\DAY-1\412-MAZE.IO".

EXAMPLE(S)

==========

Example-1: A screen display of sample file "C:\IOI\DAY-1\412-MAZ1.IO"

 by Tool-5 should look like:

N = 10, M = 8, DELAY TIME = 100

[[[[[[[[[[[[. [[[[[[

[[[[[[. . [[[[

[[[[[[. [[[[

[[[[. . [[[[

[[[[[[. . [[

[[[[[[[[. [[[[

[[[[T . . . [[

[[[[[[[[[[[[[[[[[[[[

LENGTH = 13

Example-2: The same maze's file output by Tool-4 should look like:

10 8

[[[[[[[[[[[[[[[[[[

[[[[[[[[[[

[[[[[[[[[[

[[[[[[[[

[[[[[[[[

[[[[[[[[[[[[

[[[[T [[

[[[[[[[[[[[[[[[[[[[[

SAMPLE FILES

============

We provided these correct example files for your convenience:

"C:\IOI\DAY-1\412-MAZ1.IO" and "C:\IOI\DAY-1\412-MAZ2.IO".

WARNING: Successful execution of your program with these examples

does not necessarily guarantee that your program is correct !!!

CREDITS

=======

Main menue with all tools available 5 points

Tools available in any order and repetition 10 points

Tool-1 enables setting N and M 5 points

Tool-2 enables setting DELAY TIME 5 points

Tool-3 computes structurally correct mazes 30 points

Tool-3 displays the maze while it is growing 10 points

Tool-4 writes maze to a file exactly as in example-2 5 points

Tool-5 reads unknown maze and highlights longest path 20 points

Technical constraints completely obeyed 10 points

--

 maximal 100 points

Problem Chosen for the first session (5 hours)

***TASK 4.1.3 "ISLANDS IN THE SEA"

===============================

The SEA is represented by an N times N grid. Each ISLAND is a "*" on

that grid. The task is to reconstruct a MAP of islands only from some

CODED INFORMATION about the horizontal and vertical distribution of

the islands. To illustrate this code, consider the following map:

* * * 1 2

 * * * * 3 1

* * * 1 1 1

 * * * * * 5

* * * * 2 1 1

 * 1

1 1 4 2 2 1

1 2 3 2

1

The numbers on the right of each row represent the order and size of

the groups of islands in that rows. For example, "1 2" in the first

row means that this row contains a group of one island followed by a

group of two islands; with sea of arbitrary length to the left and

right of each island group. Similarly, the sequence "1 1 1" below the

first column means that this column contains three groups with one

island each, etc.

PROBLEM STATEMENT

=================

Implement a program which repeats the following steps until a given

input file containing several information blocks has been read

completely:

1. Read the next information block from an ASCII input file

 (for the data structure of that file see also the examples below)

 and display it on the screen.

 Each information block consists of the size of the square grid,

 followed by the row constraints and the column constraints. Each

 constraint for a single row or column appears on a single line as

 a sequence of numbers separated by spaces and terminated by 0.

2. Reconstruct the map (or all of the maps, if more then one solution

 is possible, see Example-4) and display it/them on the screen.

3. Write the map(s) to the end of an ASCII output file. Each blank

 must be represented by a pair of spaces. Each island should be

 represented by a '*' followed by a space. Different maps satisfying

 the same constraints should be separated by a blank line. If there

 is no map satisfying the constraints, indicate it by a line saying

 "no map". The solutions to the different information blocks must be

 separated by a line saying "next problem".

TECHNICAL CONSTRAINTS

=====================

Constraint-1: N must be not less than 1 and not larger than 8.

Constraint-2: Put your solution program into an ASCII text file named

 "C:\IOI\DAY-1\413-PROG.xxx". Extension .xxx is:

 - .BAS for BASIC programs, .C for C programs,

 - .LCN for LOGO programs, .PAS for PASCAL programs.

Constraint-3: The name of the ASCII input file for reading the coded

 information from must be "C:\IOI\DAY-1\413-SEAS.IN".

Constraint-4: The name of the ASCII output file for writing the

 map(s) to must be "C:\IOI\DAY-1\413-SEAS.OU".

EXAMPLE(S)

==========

6 Example-1 (the problem above): 6 is the size of the grid.

1 2 0 <-- The start of the first line constraint

3 1 0

1 1 1 0

5 0

2 1 1 0

1 0

1 1 1 0 <-- The start of the first column constraint

1 2 0

4 0

2 3 0

2 0

1 2 0

4 Example-2. Solution: columns: 1 2 3 4

0 row 1:

1 0 row 2: *

2 0 row 3: * *

0 row 4:

0

1 0

2 0

0

2 Example-3. Note that there is no map

0 satisfying the constraints.

0

2 0

2 0

2 Example-4. Note that there are two different maps

1 0 satisfying the constraints.

1 0

1 0

1 0

SAMPLE FILES

============

We provided these correct example files for your convenience:

"C:\IOI\DAY-1\413-SEAS.IN" and "C:\IOI\DAY-1\413-SEAS.OU".

WARNING: Successful execution of your program with these examples

does not necessarily guarantee that your program is correct !!!

CREDITS

=======

Read an information block from

the input file and display it 5 points

Process all information blocks one by one

until the input file is read completely 10 points

Reconstruct one map for each information

block (if it has a solution) and display it 35 points

Write the solution map to the output file 5 points

Reconstruct all possible maps (if there

are several solutions) and display them 20 points

Write all solution maps correctly

separated to the output file 10 points

Identify information blocks having no solution 5 points

Technical constraints completely obeyed 10 points

--

 maximal 100 points

