
TASK 4.2.1: "HAMILTON'S ROBOT"

==============================

On a plane there are given N positions P1, P2, ..., PN with

integer coordinates (X1,Y1), (X2,Y2), ..., (XN,YN).

A robot should move through all these positions starting at P1.

It should come to each position only once with the exception of P1

which also has to be the position at the end of the tour.

There are constraints on the robot's movements. It can only move along

straight lines. From P1 it can start in any direction. Reaching

one of the Pi, before moving on to another position it must turn

90 degrees either to the left or to the right.

A robot program consists of five types of statements:

1. "ORIENTATION Xk Yk": usable as the first statement only.

 The robot turns to the direction of the

 position Pk (k between 2 and N).

2. "MOVE-TO Xj Yj" : if the robot can reach Pj without changing its

 current orientation, then it moves to the

 position Pj (j between 1 and N).

 Otherwise the statement is not executable.

3. "TURN-LEFT" : the robot changes its orientation

 90 degrees to the left.

4. "TURN-RIGHT" : the robot changes its orientation

 90 degrees to the right.

5. "STOP" : deactivates the robot. This is the necessary

 last statement of each robot program.

PROBLEM STATEMENT

=================

Implement a program that does the following:

1. Read the value of N and the coordinates for N given positions

 from an ASCII input file (see Example) and display the data on

 the screen.

2. Develop a robot program for a valid tour through all positions

 (as defined above) if one exists.

3. If there is no possible tour, the robot program

 must consist just of the "STOP"-statement.

4. Display on the screen, whether a tour is possible or not and, if there

 exists one, its length (rounded, 2 digits after the decimal point).

 The length of a tour the sum of the lengths of the straight line

 pieces.

5. Write the robot program to an ASCII output

 file exactly as is shown in Example.

TECHNICAL CONSTRAINTS

=====================

Constraint-1: Put your solution program into an ASCII text file named

 "C:\IOI\DAY-2\421-PROG.xxx". Extension .xxx is:

 - .BAS for BASIC programs, .C for C programs,

 - .LCN for LOGO programs, .PAS for PASCAL programs.

Constraint-2: The name of the ASCII input file for reading the

 positions from must be "C:\IOI\DAY-2\421-ROBO.IN".

Constraint-3: The name of the ASCII output file for writing the robot

 program to must be "C:\IOI\DAY-2\421-ROBO.OU".

Constraint-4: Program must reject inputs where N is less than 4 or

 greater than 16, without trying to find a tour!

EXAMPLE(S)

==========

Input: An input file contains in the first line the value for

 N and in the following N lines the X and Y coordinates

 of the selected positions, for example:

 4

 2 -2

 0 2

 -1 -1

 3 1

Output: For these 4 positions one shortest robot program with

 length = 12.65 is:

 ORIENTATION 3 1

 MOVE-TO 3 1

 TURN-LEFT

 MOVE-TO 0 2

 TURN-LEFT

 MOVE-TO -1 -1

 TURN-LEFT

 MOVE-TO 2 -2

 STOP

SAMPLE FILES

============

We provide these correct files with the above input and output for

your convenience:

"C:\IOI\DAY-2\421-ROBO.IN" and "C:\IOI\DAY-2\421-ROBO.OU".

WARNING: Successful execution of your program with this example

does not necessarily guarantee that your program is correct !!!

CREDITS

=======

Read input data correctly from every file and display it.... 5 points

Algorithm for computing a valid tour ok 30 points

Generated robot program syntactically correct,

 if tour does not exist 10 points

Generated robot program syntactically correct,

 if tour does exist 15 points

Screen display gives all required information 5 points

Displayed length of computed tour correct 10 points

Robot program correctly written to a file 10 points

Technical constraints obeyed 15 points

--

 maximal 100 points

Problem Chosen for the second session (5 hours)

***TASK 4.2.2: "CLIMBING A MOUNTAIN"

===================================

A mountain climbers club has P members, numbered from 1 to P. Every

member climbs at the same speed and there is no difference in speed

between climbing up and down. Climber number i consumes C(i) units

of SUPPLIES per day and can carry at most S(i) such units. All C(i)

and S(i) are integer numbers.

Assume that a climber with a sufficient amount of supplies would need

N days to reach the top of the mountain. The mountain may be too high,

so that a single climber cannot carry all the necessary supplies.

Therefore a GROUP of climbers starts at the same place and at the same

time. A climber who descends prematurely before reaching the top gives

his unneeded supplies to other climbers. The climbers do not rest

during the expedition.

The PROBLEM is to plan a schedule for the climbing club. At least one

climber must reach the top of the mountain and all climbers of the

selected group return to the starting point.

PROBLEM STATEMENT

=================

Implement a program which does the following:

1. Read from the keyboard the integer number N of days needed to

 arrive at the top, the number P of climbers in the club, and

 (for all i from 1 to P) the numbers S(i) and C(i).

 You may assume that the inputs are integers.

 Reject inputs that make no sense.

2. Try to find a schedule for climbing the mountain. Determine a

 possible group a(1), ..., a(k) of climbers who should

 participate in the party and (for all j from 1 to k) the number

 M(j) of supplies which climber a(j) carries at the start.

 Note that there may not exist a schedule for all combinations

 of N and the S(i) and C(i).

3. Output the following information on the screen:

 a) the number k of climbers actually participating in the party,

 b) the total amount of supplies needed,

 c) the climber numbers a(1), .., a(k),

 d) for all a(j), j between 1 and k, the

 initial amount M(j) of supplies to carry for climber a(j),

 e) the day D(j) when climber a(j) starts descending.

4. A schedule is OPTIMAL if

 a) the number of participating climbers is minimal and

 b) among all groups satisfying condition a) the total of consumed

 supplies is minimal.

 Try to find a nearly optimal schedule.

TECHNICAL CONSTRAINTS

=====================

Constraint-1: Put your solution program into an ASCII text file named

 "C:\IOI\DAY-2\422-PROG.xxx". Extension .xxx is:

 - .BAS for BASIC programs, .C for C programs,

 - .LCN for LOGO programs, .PAS for PASCAL programs.

Constraint-2: Programs must reject inputs where N is less than 1 or

 greater than 100. P must be not less than 1 and not

 greater than 20.

EXAMPLE(S)

==========

The following could be a dialogue with your program:

 Days to arrive to top: 4

 Number of club members: 5

 Maximal supply for climber 1 : 7

 Daily consumption for climber 1 : 1

 Maximal supply for climber 2 : 8

 Daily consumption for climber 2 : 2

 Maximal supply for climber 3 : 12

 Daily consumption for climber 3 : 2

 Maximal supply for climber 4 : 15

 Daily consumption for climber 4 : 3

 Maximal supply for climber 5 : 7

 Daily consumption for climber 5 : 1

 2 climbers needed, total amount of supplies is 10.

 Climber(s) 1, 5 will go.

 Climber 1 carries 7 and descends after 4 day(s)

 Climber 5 carries 3 and descends after 1 day(s)

 Plan another party (Y/N) Y

 Days to arrive to top: 2

 Number of club members: 1

 Maximal supply for climber 1 : 3

 Daily consumption for climber 1 : 1

 Climbing party impossible.

 Plan another party (Y/N) N

 Good bye

SAMPLE FILES

============

For your convenience, some files containing test data and correct

sample output have been prepared; please look into the directory

"C:\IOI\DAY-2".

WARNING: Successful execution of your program with these examples

does not necessarily guarantee that your program is correct !!!

CREDITS

=======

User dialogue as illustrated above.......................... 10 points

Find a solution for the special case where all C(i)=1 and

 all S(i) are equal 20 points

Find a solution for general case 20 points

Find a nearly optimal solution for general case 30 points

Detect unsolvable situations 10 points

Technical constraints obeyed 10 points

--

 maximal 100 points

TASK 4.2.3: "RUBIK'S TOOLKIT"

=============================

This problem is based on the puzzle game "Rubik's cube".

If you already know Rubik's cube you may skip this paragraph and the

next one. Rubik's cube is a cube that consists of 3 x 3 x 3 smaller

cubes. Initially each of the six faces of Rubik's cube is coloured

uniformly in a different colour; we call this the initial cube.

Every face of Rubik's cube consists of 3 x 3 faces of a layer of

nine smaller cubes.

Imagine you are looking at any of the six faces of Rubik's cube. The

layer of 3 x 3 smaller cubes you see can be rotated by a multiple of

90 degrees, where the axis of rotation is orthogonal to the face and

goes through its centre. The result is another 3 x 3 x 3 cube where

the colour pattern of the face you are looking at has been rotated

and the colour patterns of the four neighbouring faces have changed.

In our problem the faces of the cube are given names instead of

colours: U=Up, R=Right, F=Front, B=Back, L=Left and D=Down. Any move

sequence to turn the cube may be described as a string of the letters

{U, R, F, B, L, D} where each letter stands for a basic rotation:

the 90 degrees clockwise rotation of the corresponding face.

PROBLEM STATEMENT with EXAMPLE(S)

=================================

Write a program that allows the user to repeatedly solve any of the

given three subproblems in any order. You may assume that the length

of each input string is at most 35.

1. This subproblem is the translation of a given move sequence into

 a move sequence where no primitive rotation is applied more than

 3 times in sequence. Your algorithm should reject non-legal input

 sequences. Some examples are provided for clearness:

 Input Output

 L --> L

 LL --> LL

 LLL --> LLL

 LLLL --> "the empty sequence"

 LLLLL --> L

 LLRRRFFFFRLB --> LLLB

 HELLO --> "error"

2. The second subproblem is to find out whether two given move

 sequences yield the same result when applied to the initial

 cube. The examples may illustrate this:

 Input, Input, Output

 1st sequence 2nd sequence

 RL LR yes

 RU UR no

 RRFFRRFFRRFFRRFF FFRRFFRR yes

 RRFFRRFFRRFFRRFF RRFFRRFF no

3. The third subproblem is to determine how many times a given move

 sequence has to be applied to the initial cube until the cube is

 in its initial state again. The smallest such number greater zero

 is sought.

 We provide some examples:

 Input Output

 L 4

 DD 2

 BLUB 36

 RUF 80

 BLUFF 180

TECHNICAL CONSTRAINTS

=====================

Constraint-1: Put your solution program into an ASCII text file named

 "C:\IOI\DAY-2\423-PROG.xxx". Extension .xxx is:

 - .BAS for BASIC programs, .C for C programs,

 - .LCN for LOGO programs, .PAS for PASCAL programs.

SAMPLE FILES

============

none

CREDITS

=======

Main menu and user dialogue o.k. 15 points

Subproblem 1: Transformation o.k. 20 points

 Rejects wrong inputs 10 points

Subproblem 2: Correctness 25 points

Subproblem 3: Correctness 25 points

Technical constraints obeyed 5 points

--

 maximal 100 points

