

Day 1 Hex

 Last updated 6/14/2018 (version 3) Page 1 of 2

The Game of Hex

The aim of the game is for the first player to connect a hex counter

owned by her on column 1 to a hex counter owned by her on

column N.

Rules of Hex:

Hex is a two player strategy game played on a NxN rhombus of

hexagons, as illustrated here for N=6.

1. The two players of the game are your program and the

evaluation library.

2. Your program always has the first move.

3. Players alternately place hex counters on the board.

4. A hex counter may be placed at any open position on the

board.

5. Two hexagons are adjacent if they share an edge.

6. Hex counters on adjacent hexagons of the same player

(contestant next to contestant, or evaluator next to evaluator)

are connected.

7. Connectivity is transitive (and commutative): if hex1 is

connected to hex2 and hex2 is connected to hex3 then hex3 is

connected to hex1 and hex1 is connected to hex3.

Task:

• You are required to write a program which plays the game of

Hex.

• The goal of the first player (your program) is to connect a hex

counter of yours on column 1 to a hex counter of yours on

column N.

• The other player (evaluator’s program) attempts to connect

an evaluator’s hex counter on row 1 to an evaluator’s hex

counter on row N.

• If your program plays optimally, it will always win.

Input and Output:

Your program must not read from or write to any files. Your

program must not receive keyboard input, and must not produce

output on the screen. It will receive all its input from the

functions in the hex library. The library will produce an output

file named HEX.OUT; you should ignore its contents.

At the start of the game your program will be presented with a

board that may have hex counters already placed, representing a

state of a game such that the first player may still win. Your

program must use the functions GetMax and LookAtBoard to

determine the state of the board.

At the start of the game, an equal number of hexes belongs to the

evaluation program and your program.

Constraints:

1. The size of the board will always be in the range 1 to 20

inclusive.

2. Your program may have to make up to 200 moves to

complete a game. The entire game must be finished within

40 seconds. It is guaranteed that the evaluation library will

complete its processing within 20 seconds.

Library:

A library called HexLib is provided which you must link to your

code. An example file, for each programming language, showing

how this is done is included in the task directory. These files are

TESTHEX.CPP, TESTHEX.C, TESTHEX.PAS, and

TESTHEX.BAS. If you are using QuickBasic you must include

the library by typing
QB /L HEXLIB

The functions in HexLib are:

(in order of Pascal, C/C++ and Basic respectively)

function LookAtBoard (row, column: integer): integer;

int LookAtBoard (int row, int column);

declare function LookAtBoard cdecl (byval x as integer, byval y

as integer)

Returns

–1 if row<1 or row>N or column<1 or column>N

 0 if there is no hex counter at the position

 1 if the hex counter at the specified position belongs to

 your program (player 1)

 2 if the hex counter at the specified position belongs to

the

 evaluation library (player 2)

procedure PutHex (row, column: integer);

void PutHex (int row, int column);

declare sub PutHex cdecl (byval x as integer, byval y as integer)

Places a contestant’s hex counter at the specified row and column

if the position is not occupied.

function GameIsOver: integer;

int GameIsOver (void);

declare function GameIsOver cdecl ()

Returns one of the following integers

0 the game is not over.

1 every position on the board is occupied by a hex

counter.

2 your program has won.

3 the evaluation library has won.

procedure MakeLibMove;

void MakeLibMove(void);

declare sub MakeLibMove cdecl ()

Allows the evaluation library to calculate its next move and places

its hex counter on the board. The change to the board will be

indicated by LookAtBoard and the other functions.

function GetRow: integer;

int GetRow (void);

declare function GetRow cdecl ()

Returns the row of the hex counter placed by the evaluation

library, or –1 if no hex counter has been placed yet. This function

always returns the same value until your program calls

MakeLibMove again.

function GetColumn: integer;

int GetColumn (void);

declare function GetColumn cdecl ()

Day 1 Hex

 Last updated 6/14/2018 (version 3) Page 2 of 2

Returns the column of the last hex counter placed by the

evaluation library, or –1 if no hex counter has been placed yet.

This function always returns the same value until your program

calls MakeLibMove again.

function GetMax: integer;

int GetMax (void);

declare function GetMax cdecl ()

Returns the size of the board, N.

Scoring:

• If your program wins a game, it will score full marks for that

data set.

• If your program loses a game, it will score 20% for that data

set.

• If your program terminates before the end of a game or runs

out of time, it will score 0 for that data set.

