

Day 2 Stack

 Last updated 6/14/2018 (version 2) Page 1 of 2

Stacking containers

The Neptune Cargo Company operates a container storage

depot. Its container storage depot accepts containers for

storage and subsequent removal.

Containers arrive at the depot for storage every hour on the

hour. They stay at the depot for a positive integer number of

hours. When a container arrives, its documentation contains

the expected time when it will be removed. The first

container arrives at time 1. The actual time a container is

requested to be removed may ultimately be before or after

the expected time by no more than 5 hours.

In this problem, the time in hours is expressed as an

increasing positive integer which will not exceed 150.

A crane (lifting and moving apparatus) operates above the

storage space, moves containers in and out of the storage

space, and sometimes rearranges them inside the storage

space. The crane may operate in space above the defined

storage space.

Task:

You are required to write a program which has a good

strategy for accepting, storing and removing containers. A

good strategy is one that minimizes the total number of

moves that the crane makes.

The depot is a rectangular space. The length (X), width (Y)

and height (Z) of the space are made available to the

program.

Each container is a 1 x 1 x 1 cube. Containers are stacked

on top of other containers or the floor. The crane can only

move the top container of a stack.

Moving a container from one location to any other location

is always one crane move. All crane moves take place

between container arrivals and removals. Crane moves are

instantaneous.

When the depot becomes full, your program must refuse to

accept any more containers. Your program may become less

efficient or unable to continue when the depot is nearly full.

Your program may refuse to accept new containers at any

time.

Input:

Your program is required to interact with a simulation

module which will provide data, and to which your program

must submit actions and messages. The depot will be empty

when your program starts.

During your program testing, the library will return

meaningful values for a small fixed set of test data.

Each container is identified by a unique positive integer.

Your program may call the following functions at any time:

int GetX();

function GetX: integer;

DECLARE FUNCTION GetX CDECL () Returns length

of storage space (integer).

int GetY();

function GetY: integer;

DECLARE FUNCTION GetY CDECL () Returns width

of storage space (integer).

int GetZ();

function GetZ: integer;

DECLARE FUNCTION GetZ CDECL () Returns height

of storage space (integer).

X,Y,Z will not exceed 32.

The following functions provide information on the action

sequence (container arrivals and removals). The arrivals

take place on the hour, and removal requests are received

between hours. Thus, for time-keeping purposes, each

arrival marks the passing of one hour.

int GetNextContainer();

function GetNextContainer: integer;

DECLARE FUNCTION GetNextContainer CDECL ()

Returns a positive integer container number of the

next container to be stored or retrieved. If there are

no more containers to be stored or retrieved,

returns 0, indicating your program should

terminate, even if containers are still in the

warehouse.

int GetNextAction();

function GetNextAction: integer;

DECLARE FUNCTION GetNextAction CDECL ()

Returns an integer representing the action to take:

1 to store a new container, 2 to remove a container.

Day 2 Stack

 Last updated 6/14/2018 (version 2) Page 2 of 2

int GetNextStorageTime();

function GetNextStorageTime: integer;

DECLARE FUNCTION GetNextStorageTime CDECL ()

Returns time in hours (since the start) when the

container is expected to be removed. This value is

for planning purposes for your program; the actual

removal request might come at a slightly different

time, which will differ by not more than 5 hours.

This function only returns a meaningful value

when GetNextAction returns 1.

The order in which the above three functions is called does

not matter.

Consecutive calls to GetNextContainer, GetNextAction and

GetNextStorageTime will always return information about

the same container until the container is refused, stored or

removed, at which point the above functions will return

information about the next container.

Output:

Once your program has found out the information it needs

about the next container, use the following functions to

manipulate the storage depot:

int MoveContainer(int x1, int y1, int x2, int y2);

function MoveContainer(x1, y1, x2, y2: integer): integer;

DECLARE FUNCTION MoveContainer CDECL (BYVAL

x1 AS INTEGER, BYVAL y1 AS INTEGER, BYVAL x2

AS INTEGER, BYVAL y2 AS INTEGER)

Move the container on the top of the stack at x1, y1

to the top of the stack at x2, y2.

Returns 1 if the action is valid, 0 if the action is

illegal (i.e. impossible).

void RefuseContainer();

procedure RefuseContainer;

DECLARE SUB RefuseContainer CDECL ()

Refuse to accept the incoming container.

void StoreArrivingContainer(int x, int y);

procedure StoreArrivingContainer(x, y: integer);

DECLARE SUB StoreArrivingContainer CDECL

(BYVAL x AS INTEGER, BYVAL y AS INTEGER)

Store the incoming container at the top of the stack

at position x, y.

void RemoveContainer(int x, int y);

procedure RemoveContainer(x, y: integer);

DECLARE SUB RemoveContainer CDECL (BYVAL x AS

INTEGER, BYVAL y AS INTEGER)

Remove the container on the top of the stack at x, y

from the depot.

If your program cannot carry out the required action, it

should terminate.

Illegal moves are ignored by the library, and have no effect

on the simulation state or scoring.

Your program is NOT required to write any output to a file.

The library with which your program interacts will write a

log file of actions. This file is used for evaluation.

Sequencing:

Your program should get information about the next

container request. It should then move containers with the

crane if desired and subsequently store, remove or refuse the

action request.

Library:

A library called StackLib is provided which you must link

to your code.

The standard C and C++ libraries contain this library and

will automatically be linked to your program when you

include the appropriate header file.

If you are using QuickBasic you must include the library by

typing
QB /L STACKLIB

Sample source code files are present in the task directory

named TESTSTK.BAS, TESTSTK.PAS, TESTSTK.CPP,

and TESTSTK.C.

Scoring:

The program will be tested with several data sets and for

each data set, its performance will be scored against the

most efficient solution known to us, using the following

indicators:

• Total number of crane moves by your program.

• A penalty of 5 moves is imposed for every container

refused.

• A penalty of 5 moves is imposed for each container not

stored and removed (i.e. if the program terminates

normally before the entire operation is complete).

• The total score will be calculated relative to the best

known solution.

• If the program makes more than twice the number of

operations necessary, it scores 0.

• The minimum score is 0%, and the maximum score is

100%.

