
Day 2 Task 2: Traffic Congestion 

Although Canada is a large country, 

many areas are uninhabited, and 

most of the population lives near 

the southern border. The Trans-

Canada Highway, completed in 

1962, connects the people living in 

this strip of land, from St. John's in 

the East to Victoria in the West, a 

distance of 7 821 km. 

Canadians like hockey. After a hockey game, thousands of fans get in their cars and 

drive home from the game, causing heavy congestion on the roads. A wealthy 

entrepreneur wants to buy a hockey team and build a new hockey arena. Your task is 

to help him select a location for the arena to minimize the traffic congestion after a 

hockey game. 

The country is organized into cities connected by a 

network of roads. All roads are bidirectional, and 

there is exactly one route connecting any pair of 

cities. A route connecting the cities c0 and ck is a 

sequence of distinct cities c0, ..., ck such that there 

is a road from ci-1 to ci for each i. The new arena 

must be built in one of the cities, which we will 

call the arena city. After a hockey game, all of the 

hockey fans travel from the arena city to their 

home city, except those who already live in the 

arena city. The amount of congestion on each road 

is proportional to the number of hockey fans that 

travel along the road. You must locate the arena 

city such that the amount of congestion on the 

most congested road is as small as possible. If 

there are several equally good locations, you may 

choose any one. 

You are to implement a procedure LocateCentre(N,P,S,D). N is a positive integer, 

the number of cities. The cities are numbered from 0 to N-1. P is an array of N 

positive integers; for each i, P[i] is the number of hockey fans living in the city 

numbered i. The total number of hockey fans in all the cities will be at most 

2 000 000 000. S and D are arrays of N-1 integers each, specifying the locations of 



roads. For each i, there is a road connecting the two cities whose numbers are S[i] and 

D[i]. The procedure must return an integer, the number of the city that should be the 

arena city. 

Example 

As an example, consider the network of five cities in the top diagram on the right, 

where cities 0, 1 and 2 contain 10 hockey fans each, and cities 3 and 4 contain 20 

hockey fans each. The middle diagram shows the congestions when the new arena is 

in city 2, the worst congestion being 40 on the thicker arrow. The bottom diagram 

shows the congestions when the new arena is in city 3, the worst congestion being 30 

on the thicker arrow. Therefore, city 3 would be a better location for the arena than 

city 2. The data for this example are in grader.in.3a. 

Note 

We remind contestants that with the given constraints, it is possible to submit a 

solution that passes Subtask 3 and fails Subtask 2. However, remember that your final 

score for the entire task is determined by only oneof your submissions. 

Subtask 1 [25 points] 

Assume that all the cities lie in a straight line from East to West, and that the roads all 

follow this straight line with no branches. More specifically, assume that for all i with 

0 ≤ i ≤ N-2, S[i] = i and D[i] = i+1. 

There are at most 1000 cities. 

Subtask 2 [25 points] 

Make the same assumptions as in Subtask 1, but there are at most 1 000 000 cities. 

Subtask 3 [25 points] 

The assumptions from Subtask 1 may no longer be true. 

There are at most 1000 cities. 

Subtask 4 [25 points] 

The assumptions from Subtask 1 may no longer be true. 

There are at most 1 000 000 cities. 



Implementation Details 

• Implementation folder: /home/ioi2010-contestant/traffic/ 

• To be implemented by contestant: traffic.c or traffic.cpp or traffic.pas 

• Contestant interface: traffic.h or traffic.pas 

• Grader interface: none 

• Sample grader: grader.c or grader.cpp or grader.pas 

• Sample grader input: grader.in.1 grader.in.2 

Note: The first line of the input file contains N. The following N lines contain 

P[i] for i between 0 and N-1. The following N-1 lines contain pairs S[i] 

D[i] for i between 0 and N-2. 

• Expected output for sample grader input: grader.expect.1 grader.expect.2 etc. 

• Compile and run (command line): runc grader.c or runc grader.cpp or runc 
grader.pas 

• Compile and run (gedit plugin): Control-R, while editing any implementation 

file. 

• Submit (command line): submit grader.c or submit grader.cpp or submit 
grader.pas 

• Submit (gedit plugin): Control-J, while editing any implementation or grader 

file. 

 


