International Olympiad in Informatics 2012
23-30 September 2012 i
Sirmione - Montichiari, Italy Plzza

lake garda - lombardy PraCtlce taSkS Enghsh — 10

Olympic pizza

Pizza is a widely-known traditional Italian food, consisting of oven-baked, flat bread covered with
tomato sauce, melted mozzarella cheese and many other optional toppings. There are so many
kinds of pizzas according to their shape (circular, rectangular or square), their thickness (from few
millimeters to a couple of centimeters) and, most importantly, their toppings (cheese, ham, salami,
sausage, fries, mushrooms, olives, etc., and any combination of them). That's why several pizza
places (pizzerias) can serve such a large variety of pizzas!

Olympic pizza

Our crowded pizzeria at IOl needs your help to manage its orders and make its famous pizza. Its
secret is to use very fresh ingredients and it needs frequent deliveries of new ingredients to achieve
this. Because of frequent traffic jams in Italy, many deliveries arrive late, causing some ingredients
to be unavailable at some times. When an ingredient is not available, the pizzeria cannot any make
pizza that requires that ingredient.

Your task is to write a program that will receive notifications of new pizza orders and new
ingredient deliveries. Then, it has to tell the pizza maker when she can bake a pizza: this has to be
done as soon as all the needed ingredients are available.

Statement

Your task is to write a program that, receiving orders and deliveries, tells the pizza maker when she
can bake pizzas as described above. Specifically, there are exactly 8 ingredients for topping a pizza
and they are identified by the integers ranging from 0 to 7. The pizza orders are also numbered
consecutively starting from O (which represents the first pizza order). Your program has to
implement the following routines.

Olympic pizza - en 1/3


http://127.0.0.1/v/index.php/File:Logo.png
http://127.0.0.1/v/index.php/File:Pizza.jpg

" Tnit() — it is called exactly once at the beginning of the execution (before any other
routines) to indicate that the pizzeria can start receiving orders or deliveries.

s Order(N, A) — given a positive integer N < 8 and an array A of N integers (ranging from
0 to 7, with no two equal elements), it notifies your program that a pizza has been ordered
and that it requires the N ingredients described by the elements of A (in arbitrary order).

8 Delivery(I) — given an integer I between 0 and 7, it notifies your program that a delivery
of one portion of ingredient I has been received, so it can be used for one pizza.

Your program has to call the following routine provided by the system to tell the pizza maker to
bake a pizza:

= Bake(K)— given an integer K > 0, it indicates that the pizza for order K has to be baked.

You must call Bake as soon as its ingredients are ready: if there are more pizzas that can be baked,
the one ordered first must be chosen. Some of the ordered pizzas might never be made because of
the lack of some ingredients.

Example

In the following example, the left column reports the calls to your routines, while the right column
reports the calls to the system routine that your program should make.

Your routines System routine
Init()
Delivery(l)
Delivery(l)
Delivery(l)
Delivery(2)
Delivery(2)
order(3,[1, 2, 3])
Delivery(4)
Delivery(4)
Order(3,[1, 2, 4]) Bake(l)
Delivery(3) Bake(0)
Order(4,[1, 2, 3,4))
Delivery(2)

Subtask 1 [25 points]

The routines Order and Delivery will be called at most 100 times in total.

Subtask 2 [25 points]

The routines Order and Delivery will be called at most 5 000 times in total.

Olympic pizza - en 2/3



Subtask 3 [20 points]

The routines Order and Delivery will be called at most 100 000 times in total. Also, all
delivery calls will happen before any order call.

Subtask 4 [30 points]

The routines Order and Delivery will be called at most 100 000 times in total.

Implementation details

You have to submit exactly one file, named pizza.c, pizza.cpp orpizza.pas, which
implements the routines described above using the following signature.

C/C++ programs

void Init();
void Order (int N, int *A);
void Delivery (int I);

The Bake function will have the following signature:

void Bake (int K);

Pascal programs

procedure Init();
procedure Order (N : LongInt; var A : array of LongInt);
procedure Delivery (I : LonglInt);

The Bake procedure will have the following signature:
procedure Bake (K : LonglInt);

These routines must behave as described above. Of course you are free to implement other routines
for their internal use. Your submissions must not interact in any way with standard input or
standard output, nor with any other file.

Run-time limits
® Time limit; 1 second.

® Memory limit: 256 MiB.

Olympic pizza - en 3/3



International Olympiad in Informatics 2012

|| |

I IE 23-30 September 2012

e s s o Sirmione - Montichiari, Italy queue
!k-lg-ﬁ mlrrba!y Practice tasks English — 1.0

Italian queue

Sometimes (fortunately less often than many people think) in Italy the usual concept of
monodimensional waiting line is replaced by a far less rigorous idea, to which we are going to refer
as Italian Queue.

The Big Mess Theory

While it is a common thought that the Universe undergoes some supreme order, a long time ago we
Italians realized, as Galileo's descendents, that the Universe is more complicated than expected. We
empirically found that the Universe is better modeled after the Big Mess Theory and the Italian
Queue is a good illustrative example. What for a foreigner seems to be a chaotic queue, for us it is
just experimental validation of a theory...

Italian Queue (IQ)

Suppose that there is a large square room containing many people at the same time, and a special
place in the room that is very interesting for some reason: we call this place the Very Interesting
Point (VIP). At some time, more people decide to enter the already crowded room, one by one, to
get close to the VIP: instead of queuing in the waiting line in arrival order, as normally expected,
they form an IQ so that each newcomer reaches the currently free place that is closest to the VIP.
(Ties are broken arbitrarily when there are many free places at the same distance from the VIP.) As
expected, the resulting IQ is not a simple waiting line and this seems to confirm our theory.

Statement

This is an output-only task. You are given 10 text files named inputO.txt, inputl.txt,
..., input9.txt containing the initial arrangement of the room and you are to submit files
named outputO.txt, outputl.txt, ...,output9.txt containing a possible final
arrangement of the room (in other words, a simulation of where people might go).

Italian queue - en 1/3


http://127.0.0.1/v/index.php/File:Logo.png
http://127.0.0.1/v/index.php/File:Coda.jpg

The first line of each input file contains two positive integers N and K, where N is the size of the
room (recall that the room is square), and K is the number of people that are going to enter the room
(that is, the people whose behaviour you are going to simulate).

A description of the initial arrangement of the room follows. The VIP is represented by capital letter
‘0’, a person is represented by capital letter ‘X’, a free place is represented by the dash symbol “-".

Each output file must contain the final description of one of the possible final states of the room,
using the same format above. Since K people will have entered the room (settling in as many free
places), we have that K ‘-’ will be replaced by so many ‘X’.

Remarks

Each character of the room's description represents what we have so far called a place, whose
coordinates are non-negative integers where (0, 0) is the coordinate of the topmost and leftmost
places. The K new people can reach every free place, included the ones surrounded by other
people. The distance between any two places is defined as the Euclidean distance between their
integer coordinates.

Example

Suppose you are given the following input file.

The second one is going to settle in the only position at distance V2 from the VIP:

- XXX-
-X0XX
-XXX-

-X-XX

Finally, the third person has two possible positions (both at distance 2 from the VIP):

-XXX-
XXOXX
-XXX-
X-X-=
-X-XX

Italian queue - en 2/3



Since only one solution is required, you can choose between the two possibilities. For example, a
valid output file would be the following:

Subtasks [10 points each]

Each of the 10 test cases is worth 10 points.

Italian queue - en 3/3



International Olympiad in Informatics 2012

|| |

I IE 23-30 September 2012 ]

e s s o Sirmione - Montichiari, Italy tour 1S t
!k-lg-ﬁ mlrrba!y Practice tasks English — 1.0

Touristic plan

An eccentric tourist has decided to visit some of the most beautiful Italian cities. In his luggage,
together with an Italian/wherever-he-comes-from phrasebook, he has a number of large coins made
of pure gold.

The tour

The tourist has already chosen a list of N cities to travel across, and intends to follow his plan until
he runs out of money (so he might not reach the last cities in his list). He starts in the first city, and
travels from one city to the next one, following the order he has established and paying one golden
coin per route.

When he is in a city (included the first one), he can spend the night in a hotel in order to visit that
city. If he does so, he has to pay the hotel one golden coin, and his happiness increases by a value
that depends on the city.

Clearly, the tourist is interested in maximizing the happiness that he gains by suitably using the
coins during this holiday.

Statement

Your task is to write a program that finds the maximum total happiness that the tourist can gain.
Specifically, you have to implement a routine called GreatestHappiness(N, K, H) that,
given the initial number K of golden coins, the number N of cities and the array H of N positive
integers representing the amount of happiness for each of the cities, returns the required total
happiness. Cities are numbered from 0 to N - 1: when the tourist visits city 1, he gains happiness
H[i], where 1 < H[1] <1 000.

Touristic plan - en 1/3


http://127.0.0.1/v/index.php/File:Logo.png
http://127.0.0.1/v/index.php/File:Venezia.jpg

Note that the tourist must visit the cities in increasing order: for each city 1=0, 1, 2, ..., N - 1, either
he visits 1 (and spends one coin) or skips it (and does not spend a coin); in both cases, he must
spend one coin anyway for travelling from city i - 1 to city i, when i > 1.

Example
Suppose N=4,K=5and H=[4, 5, 2, 7].

The tourist might visit the first city, travel, visit the second city, travel and visit the third city. He
would spend 2 coins for travelling and 3 coins for visiting. By doing so, he would gain a total of
happiness of 4 + 5 +2 =11.

But a better idea is to travel, visit the second city, travel, travel again and finally visit the fourth city.
He would spend 3 coins for travelling and 2 for visiting, and he would gain a happiness of 5 + 7 =
12. This is the best achievable result.

Subtask 1 [18 points]

It holds N < 10.
Subtask 2 [1 point]

It holds N = 42.

Subtask 3 [22 points]
It holds N < 200.

Subtask 4 [26 points]
It holds N < 1 000.

Subtask 5 [33 points]

It holds N < 1 000 000.

Implementation details

You have to submit exactly one file, named tourist.c, tourist.cpp ortourist.pas,
which implements the routine described above using the following signatures.

C/C++ programs

int GreatestHappiness(int N, int K, int *H);

Touristic plan - en 2/3



Pascal programs

function GreatestHappiness (N, K: LongInt; var H : array of LongInt) : LongInt;

These routines must behave as described above. Of course you are free to implement other routines
for their internal use. Your submissions must not interact in any way with standard input or
standard output, nor with any other file.

Run-time limits
® Time limit: 1 second.

= Memory limit: 256 MiB.

Touristic plan - en 3/3



	Olympic pizza
	Statement
	Subtask 1 [25 points]
	Subtask 2 [25 points]
	Subtask 3 [20 points]
	Subtask 4 [30 points]
	Implementation details


