International Olympiad in Informatics 2014
13-20th July 2014
Taipei, Taiwan
Day-1 tasks

## Game

Jian-Jia is a young boy who loves playing games. When he is asked a question, he prefers playing games rather than answering directly. Jian-Jia met his friend Mei-Yu and told her about the flight network in Taiwan. There are $n$ cities in Taiwan (numbered $0, \ldots, n-1$ ), some of which are connected by flights. Each flight connects two cities and can be taken in both directions.

Mei-Yu asked Jian-Jia whether it is possible to go between any two cities by plane (either directly or indirectly). Jian-Jia did not want to reveal the answer, but instead suggested to play a game. Mei-Yu can ask him questions of the form "Are cities $x$ and $y$ directly connected with a flight?", and Jian-Jia will answer such questions immediately. Mei-Yu will ask about every pair of cities exactly once, giving $r=n(n-1) / 2$ questions in total. Mei-Yu wins the game if, after obtaining the answers to the first $i$ questions for some $i<r$, she can infer whether or not it is possible to travel between every pair of cities by flights (either directly or indirectly). Otherwise, that is, if she needs all $r$ questions, then the winner is Jian-Jia.

In order for the game to be more fun for Jian-Jia, the friends agreed that he may forget about the real Taiwanese flight network, and invent the network as the game progresses, choosing his answers based on Mei-Yu's previous questions. Your task is to help Jian-Jia win the game, by deciding how he should answer the questions.

## Examples

We explain the game rules with three examples. Each example has $n=4$ cities and $r=6$ rounds of question and answer.

In the first example (the following table), Jian-Jia loses because after round 4, Mei-Yu knows for certain that one can travel between any two cities by flights, no matter how Jian-Jia answers questions 5 or 6 .

| round | question | answer |
| :--- | :--- | :--- |
| 1 | 0,1 | yes |
| 2 | 3,0 | yes |
| 3 | 1,2 | no |
| 4 | 0,2 | yes |
| ----- | ------- | ------ |
| 5 | 3,1 | no |
| 6 | 2,3 | no |

In the next example Mei-Yu can prove after round 3 that no matter how Jian-Jia answers questions 4, 5 , or 6 , one cannot travel between cities 0 and 1 by flights, so Jian-Jia loses again.

| round | question | answer |
| :--- | :--- | :--- |
| 1 | 0,3 | no |
| 2 | 2,0 | no |
| 3 | 0,1 | no |
| ----- | ------- | ----- |
| 4 | 1,2 | yes |
| 5 | 1,3 | yes |
| 6 | 2,3 | yes |

In the final example Mei-Yu cannot determine whether one can travel between any two cities by flights until all six questions are answered, so Jian-Jia wins the game. Specifically, because Jian-Jia answered yes to the last question (in the following table), then it is possible to travel between any pair of cities. However, if Jian-Jia had answered no to the last question instead then it would be impossible.

| round | question | answer |
| :--- | :--- | :--- |
| 1 | 0,3 | no |
| 2 | 1,0 | yes |
| 3 | 0,2 | no |
| 4 | 3,1 | yes |
| 5 | 1,2 | no |
| 6 | 2,3 | yes |

## Task

Please write a program that helps Jian-Jia win the game. Note that neither Mei-Yu nor Jian-Jia knows the strategy of each other. Mei-Yu can ask about pairs of cities in any order, and Jian-Jia must answer them immediately without knowing the future questions. You need to implement the following two functions.

- initialize (n) -- We will call your initialize first. The parameter $\boldsymbol{n}$ is the number of cities.
- hasEdge (u, v) -- Then we will call hasEdge for $r=n(n-1) / 2$ times. These calls represent Mei-Yu's questions, in the order that she asks them. You must answer whether there is a direct flight between cities $u$ and $v$. Specifically, the return value should be 1 if there is a direct flight, or 0 otherwise.


## Subtasks

Each subtask consists of several games. You will only get points for a subtask if your program wins all of the games for Jian-Jia.

| subtask | points | $n$ |
| :--- | :--- | :--- |
| 1 | 15 | $n=4$ |


| subtask | points | $n$ |
| :--- | :--- | :--- |
| 2 | 27 | $4 \leq n \leq 80$ |
| 3 | 58 | $4 \leq n \leq 1500$ |

## Implementation details

You have to submit exactly one file, called game.c, game.cpp or game.pas. This file implements the subprograms described above using the following signatures.

## C/C++ programs

```
void initialize(int n);
int hasEdge(int u, int v);
```


## Pascal programs

```
procedure initialize(n: longint);
function hasEdge(u, v: longint): longint;
```


## Sample grader

The sample grader reads the input in the following format:

- line $1: n$
- the following $r$ lines: each line contains two integers $u$ and $v$ that describe a question regarding cities $u$ and $v$.

