Olympiads in Informatics, 2010, Vol. 4, 87-94 87
© 2010 Institute of Mathematics and Informatics, Vilnius

Performance Analysis of Sandboxes
for Reactive Tasks

Bruce MERRY

ARM Ltd
110 Fulbourn Road, Cambridge, CB1 9NJ, United Kingdom
e-mail: bmerry@gmail.com

Abstract. Security mechanisms for programming contests introduce some overhead into time mea-
surements. When large numbers of system calls are made, as is common in reactive tasks with pro-
cesses communicating over pipes, this may significantly distort timing results. We compared the
performance and consistency of two sandboxes based on different security mechanisms. We found
that in-kernel security has negligible effect on measured run-times, while ptrace-based security can
add overhead of around 75%. We also found that ptrace-based security on a dual-core CPU adds
far greater overhead as well as producing highly variable results unless CPU affinity is used.

Key words: sandbox, security, timing.

1. Introduction

In programming contests supporting native languages (such as C), it is common prac-
tice to execute the resulting code in some form of secured environment, or sandbox.
This makes the contest environment robust against malicious or defective solutions that
may attempt to interfere with the evaluation process. This is achieved by some form
of monitoring of the calls made by the application to the operating system (so-called
system calls).

The performance impact of such monitoring will of course depend on the number of
system calls that are made. Batch tasks are tasks in which the solution inputs data from
a file, processes it, and outputs results to another file. Since I/O libraries generally buffer
data, this usually results in relatively few system calls, even if there are a large number of
individual input and output values'.

Reactive tasks are tasks where a solution will both send and receive data in an inter-
leaved sequence. Typical reactive tasks are query processing systems (where the solution
will receive information, then answer queries about the information, potentially inter-
leaved with updates) and games (where the solution will output moves in the game and
receive input about the state of the game). For reasons of security, this is commonly im-
plemented as a communication between processes using a pipe; since each output must

Tt should be noted, however, that a common mistake of C++ programmers is to end lines using
std: :endl, which also flushes the output and hence produces a system call.



88 B. Merry

be produced before the response can be received, each communication results in a sys-
tem call. Thus, reactive tasks can require hundreds of thousands of system calls, making
them particularly sensitive to the performance of the sandbox.

2. Experimental Design
2.1. Sandboxes

We have used two sandboxes. The first is based on the interception of system calls from
userspace (using the ptrace system call in Linux), which is used in the USA Computer
Olympiad (USACO; Kolstad,2009).

The second sandbox is based on in-kernel security checks and implemented as a Linux
Security Module (Merry, 2009). This is the security module used in the South African
Computer Olympiad (SACO), but updated to run with Linux 2.6.30. Note that this version
of Linux no longer allows such security modules to be loaded at run time, so the “module”
is in fact a kernel patch and is part of the binary kernel image.

2.2. Tasks

To keep the number of variables manageable, we considered only a single task: Regions
from the International Olympiad in Informatics 2009 (Fan and Peng, 2009). We also only
used test case number 32 (the last and largest). This task is a query processing task, and
for this test case there are 200,000 queries. This yields slightly over 400,000 system calls
(one to receive each query, one for each reply, and a small number during startup and
shutdown) — this was confirmed using strace (http://linux.die.net/man/1/
strace).

The source code for the actual reactive grader was not available, so we used a dummy
grader, which passes on queries from a file and accepts responses, but does not discards
the responses rather than checking them.

We also ran each test in a “batch” mode. This used the same solution code (in partic-
ular, including a flush after each write), but directed input and output from and to files
rather than an inter-process pipe. This has half the number of system calls (since output
is flushed but input is buffered), but allows us to observe the effects of a large number of
system calls in the absence of a reactive grader.

2.3. System Setup

Tests were run on a MacBook Pro with a 2.16 GHz processor and 1GB of RAM, run-
ning Linux 2.6.30. Some steps were taken to reduce the effect of random factors on the
runtimes so that small differences between sandboxes would not be lost in the noise:
e All the important files (sandbox userspace, program to test, reactive grader, input
and output files) were held on an in-memory filesystem (tmpfs), to eliminate the
effects of disk caching and disk access time.



Performance Analysis of Sandboxes for Reactive Tasks 89

e To make the above more effective, all programs were statically linked, so that li-

brary code was also stored in RAM.

o Since the machine is a laptop, the CPUs are normally run at lower frequency when

idle. For these tests, the frequency was forced to the maximum.

The same kernel was used for all tests, which included the patches necessary for the
SACO sandbox. However, the boot-time kernel argument to enable this sandbox was
only used where it was actively being tested. When the kernel argument is not passed, the
patches may slightly increase the memory footprint of the kernel, but its security hooks
are never called and so it should not degrade performance.

The USACO sandbox is written to deal with input and output files in a particular way.
For our testing, it was modified to allow the sandboxed program to communicate directly
with standard input and standard output. However, the security aspects of the sandbox
were not modified.

The USACO sandbox also relies on the system calling conventions in the 1386 ar-
chitecture (i.e., 32-bit code). Although the kernel and operating system are 64-bit, the
solution was compiled as a 32-bit binary (using the -m32 option to GCC).

2.4. CPU Affinity

As well as comparing sandbox methods, we have investigated the effects of the number
and configuration of CPU cores in the system. This was necessarily limited to two CPU
cores on a single CPU package, since that was what was available in the test system. Four
configurations were tested:

nosmp The nosmp command-line argument was passed to the kernel during boot, which
limits the system to a single CPU, and also affects some code that needs to take
additional steps in multi-processor systems.

none No special steps are taken. Processes run on both CPU cores, and are free to mi-
grate.

separate Both the solution and the reactive grader (the process on the other end of the
pipes) use CPU affinity masks to restrict them to a single core. The solution is
locked to one core, the reactive grader to the other.

same Similar to the above, but both processes are locked to the same core.

3. Results and Analysis

Fig. 1 shows box plots for all combinations of sandbox and CPU affinity?. Times reported
are the time measured for the solution process alone, computed as user plus system time.
A number of observations can be made:

2The thick horizontal black bar indicates the mean, the boxes show the range covered by the central 50%
of observations, and circles show outliers.



B. Merry

7.5 —
7.0
6.5 —
6.0 —
55 —
5.0
5
0
5
0
5
2.0
1.5 1
1.0
0.5 —
0.0

Spuooes

90

awes / 0oesn
ajesedas / 0oesn
auou / ooesn
dwsou / ooesn
awes / 00es
oleledas / 0oeS
auou / 0oes
dwsou / 0oes
awes / suou
aleJedas / auou
auou / auou

dwsou / suou

Fig. 1. Observed CPU times over 100 runs. Labels are of the form sandbox / CPU affinity. Black boxes show

reactive grading, gray boxes show batch grading.



91

Performance Analysis of Sandboxes for Reactive Tasks

2.40 —

2.35

2.30

Spuooes

awes / ooesn
oleledas / ooesn
auou / 0oesn
dwsou / ooesn
awes / ooes
ajesedas / ooes
auou / ooes
dwsou / 0oes
awes / auou
ajeJedas / suou
auou / auou

dwsou / suou

Fig. 2. Observed CPU times over 100 runs, close-up view. Refer to Fig. 1 for details.



B. Merry

92

oo H1LL

0.30

0.25 —

0.20

0.15

0.10 —

0.05

0.00 —

awes / ooesn
alejedas ; ooesn
auou / ooesn
dwsou ; ooesn
awes / ooes
alejedas ; ooes
auou / 09es
dwsou ; ooes
awes / auou
alesedas ; auou
auou / auou

dwsou ; suou

Fig. 3. Standard deviations of the test runs, for reactive mode only.



Performance Analysis of Sandboxes for Reactive Tasks 93

e The most striking result is that the USACO sandbox suffers both extremely high
overhead and high variability when run on two CPUs without affinity masks, even
in batch mode. While we have not performed a detailed investigation, a possible
explanation is that the sandbox runs as a user-space process, and must examine
memory in the solution process to determine whether the system call is safe. If the
processes happen to be running on separate processors, then the memory may not
be in the cache of the processor which needs to access it.

e For all choices of affinity and mode, the USACO sandbox introduces significant
overhead.

e In reactive mode, forcing the processes to run on separate cores generally reduces
performance. This may be due to the overheads of inter-processor communication,
which may trigger cache writebacks or invalidations to ensure that the processors
have a coherent view of the data.

e The batch times are generally lower, due to having half the number of system calls.
Excluding the USACO grader, the differences between groups are statistically sig-
nificant (other than between same and separate, which are equivalent without a
reactive grader), but are clearly very small.

Fig. 2 shows a close-up view of some of the box plots, for reactive mode only. It is
clear that when running with the SACO sandbox or without a sandbox, a single CPU
yields lower times than two. These graphs also show that the SACO sandbox adds no
statistically significant overhead (confirmed by t-test).

Fig. 3 shows the standard deviation associated with each test. It confirms that the
USACO sandbox without affinity control suffers from much greater variability, while the
SACO sandbox has no obvious effect. It also indicates that forcing the solution and the
reactive grader to run on separate cores increases variation.

4. Conclusions and Future Work

It should be noted that the results show the measured run-times of the solution process.
Lower run-times do not necessarily equate to faster evaluation, and indeed the nosmp
tests may take longer to complete due to only a single core being available. From the
contestants’ point of view, timing should satisfy two requirements:

1. Times should have low variability, to ensure that evaluation is fair. If two con-
testants have functionally equivalent solutions, it should not be the case that one
scores higher than the other due to random fluctuations.

2. The security system should not significantly alter times. While contestants ought
to test their solutions on the evaluation system (this facility being commonly avail-
able in contests with on-line submission), it is nevertheless more convenient to be
able to test locally with some expectation that similar timing will be seen during
evaluation.

It is clear that ptrace-based security does not satisfy the second requirement where

large numbers of system calls are involved. The first requirement can be met to some



94 B. Merry

extent with ptrace-based security, but only if CPU affinity masks are correctly configured
on multi-core systems.

It should also be noted that this is a limited experiment, involving only a single CPU
design, task, solution and test case, and so conclusions might not generalise. CPU cache
and memory architecture in particular may significantly influence the effects of CPU
affinity; and the pattern of timing in system calls may also have an effect.

Acknowledgements

Rob Kolstad kindly provided access to the USACO sandbox, and also suggested investi-
gating CPU affinity.

References

Strace — Trace System Calls and Signals. http://linux.die.net/man/1/strace.

Fan, L., Peng, R. (2009). Task 2.3 Regions. In 21st International Olympiad in Informatics, pp. 28-31.
Kolstad, R. (2009). Infrastructure for contest task development. Olympiads in Informatics, 3, 38-59.
Merry, B. (2009). Using a Linux security module for contest security. Olympiads in Informatics, 3, 67-73.

B. Merry took part in the IOI from 1996 to 2001, winning two gold
medals. Since then he has been involved in numerous programming
contests, as well as South Africa’s IOI training program. He obtained
his PhD in computer science from the University of Cape Town and is
now a senior software engineer at ARM.




