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Abstract. Most of tasks in informatics are set with a background story about real processes even
though the circumstances seem to be strained a little. At the same time natural sciences (physics,
chemistry, biology, genetics, astronomy, geology, etc. . .) contain many interesting laws and facts,
some of which can serve as a natural base for tasks in informatics. A survey of some of the laws,
facts and techniques (especially ones of discretization), chosen to illustrate a composition of gen-
uine tasks, are proposed in the paper.
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1. Survey of Ways to Generate Tasks and the Aim of Paper

Burton and Hiron (2008) offered two opposite ways to create a good task: “To wrap an
abstract task inside a good story” and “To look around and to take inspiration from real
things”. In Pankov (2008) we reviewed ways to generate task ideas based on “actors” and
their actions in real and imaginary spaces and called such tasks natural. In other words,
we have supposed that a good task should create a particular image in the mind of the
contestant. In our experience, even questions using abstract mathematical spaces (Weeks,
1985) can be presented in a natural way in programming tasks. In Pankov and Barysh-
nikov (2009) we described some processes for taking any real (desirable) object (host
country, city, university, sponsor, local sights, events, history, circumstances, etc. ..) and
creating a task out of it for an informatics olympiad. The aim of this paper is to illustrate
a possible involvement of scientific laws and facts into creating tasks in informatics but
not to present ready-to-use tasks. Hence, we shall not give complete effective algorithms
to all tasks.

We shall not consider the full procedure of creating a task with all of the corresponding
restrictions, tests, etc. . .. It is not an aim of this paper and it was considered in details in
Kemkes et al. (2007), Diks et al. (2008), Burton and Hiron (2008) and other publications.
We shall give a brief description of “circumstances” or a background text of a task, which
hopefully can be developed to full-grown.

We also shall not describe a sequence of tasks beginning from an evident one (with an
algorithm to solve) and continuing to the more complex (where the problem of creating
an appropriate algorithm arises).

In general, the following three types of tasks can be set if the properties of an object
are given:
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— Combinatory: how many different objects exist?

REMARK. The difference between objects is also an important notion. Often, the
more objects are considered to be equivalent to each other the more difficult is the
task (the more difficult is application of standard algorithms). And there is a lot
of equivalence for real objects (rotation, reflection, translation and equivalence of
atoms) which makes tasks more interesting.

— Optimization: find the maximum (or minimum) of the all objects.

— Interaction: detect the object by a minimal number or a restricted number of re-
quests (trials). Such interaction can be implemented either as an interactive task
(the contestant’s program calls the jury’s procedure) or as a simple (batch) task
(see Task 12).

By our observation, most of tasks generated in such way are too difficult (NP-hard).
On low level olympiads such tasks may be given with fewer restrictions, so they can be
solved by full sorting.

On high level olympiads special restrictions can be put in place to distinguish an
interesting algorithm.

For instance, in string processing, restrictions may be put on number of given words,
on lengths of words, or on the number of symbols.

2. Physics
2.1. Crystals

The following type of task is classical. We mention it for completeness as related to
the physical notion of a crystal. The full object (pattern) is composed of repeated sam-
ple (or “tile”). Given information about the pattern, find the sample (or “the least possi-
ble”/*smallest possible” sample) this pattern can be composed of.

Also, a two-dimensional rectangle net is usual. A two-dimensional triangle, a two-
dimensional hexagonal and a three-dimensional rectangle nets also exist and can be in-
volved in tasks. An interesting example of a crystal is a snowflake, which can be defined
as a bounded figure with rotation symmetry of 60° and mirror symmetry with respect to
an axis (and, consequently, to two other axes) passing through the center.

Task 1. Starting with a black-and-white photograph of a snowflake with a known
center and horizontal axis of symmetry, only some black points and some white points
remain. Given the coordinates (pairs of integer numbers) of these points in a rectangle
system of coordinates with the angle XOY equal 60°. Can these points belong to an ideal
snowflake?

Formulas to solve: clockwise rotation 60° : X, ew = X +Y; Yiew = —X. Reflection
with respect to the X-axis: Xpeww = X + Y Yiew = =Y.

The following task imitates similar processes of crystallization and of systematic life
expansion.
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Task 2. Given a net or a graph (a net is a particular case of graph) and a natural
number K. If a vertex of a graph is marked now then all its neighbors are marked at the
next step.

How many vertices (“centers of crystallization”, “vegetative planting stocks”, “ant
colonies”, etc. . .) must be marked initially to mark the entire graph in K steps?

Such a task is relatively simple. By involving more than one type of crystals in the
same media or more than one of (competing) species one can yield more variations and
more of a challenge in a task.

2.2. Conservation Laws

Law of conservation of mass and of linear momentum:

There are some (massive pointwise) objects moving along a straight line. If two or
more objects are too close and they clash then the operating person can slightly devi-
ate some of them. Those which are not deviated, merge together. The velocity of the
new/whole object is calculated using the law of conservation of linear momentum: if the
objects had masses My, ..., M} and velocities V1, ..., Vj (positive or negative) then the
velocity of the merged object is

V= (My« Vit 4 My o+ Vi) /(My + -+ - + Mp).

Task 3. Given number N of objects, (positive integer) mass M |i], (integer) initial
position X [¢] and (integer) initial velocity V'[i] of all objects, i =1... N; X[1] < --- <
X|[N].

Find the smallest possible absolute value of velocity of the merged object. Due to
conditions of the task, the output is a rational number. So, it must be presented as
<integer>/<natural> (as a fraction in its simplest form) where the HCF of the numer-
ator and the denominator must equal 1.

EXAMPLE. N = 3, X[1] = 10, X[2] = 20, X[3] = 30, M[1] = 100, X[2] = 500,
X[3] = 104, V[1] = 7, V[2] = 20, V[3] = —T7. Answer: 7/51 [mass of the merged
object is 204].

Law of the conservation of the electrical charge.

Task 4. Given a graph, its V' vertices are charged electrically (given integer non-
zero numbers C[i], i« = 1...V]) and its arcs of given lengths L[¢, j] (natural numbers)
are nonconductors, 7,7 = 1...V. Also, there is a given length L1 (natural number) of
(conducting) wire. If the charged objects are connected with the conductor wire then their
common charge is the sum of the all charges.

Find A) the smallest possible absolute value or B) the greatest possible absolute value
of charge of any part of the graph which can be obtained by cutting the wire into pieces
and connecting some vertices (objects) with these pieces along the arcs.

EXAMPLE. V = 3, C[1] = 10, X[2] = —20, X[3] = —12, L[1,2] = L[1,3] =
L[2,3] =100, L1 = 103. Answer A: 2. Answer B: 32.
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2.3. Methods of Physical Investigation

The process of balancing (with or without weights) is a source for many tasks.

Task 5. There is a balance scale and N objects of weights (kg) W[1],..., W[N]
(given natural numbers). If difference between sides on the balance is greater than K kg
then the scales turn upside down (K is a given non-negative integer). A robot can carry
and put only one object on the scales at any given moment.

What is the minimum number of robots necessary to put all /N objects on the scales?

EXAMPLE. N = 6, W[1] = 1, W[2] = 8, W[3] = 5, W[4] = 20, W[5] = 20,
W16] = 1, K = 1. Answer: 4 robots [in two steps].

Task 6. There are the scales and N weights (kg) W[1],. .., W[N] (natural numbers)
and an object of unknown weight W 1. It is known that 1 < W1 < WO0; WO is a given
natural number; the HCF of W[1],..., W[N] is 1.

What is the minimum number of consecutive weightings necessary to detect W1 or
to make the conclusion that it is impossible if the weights can be put A) on one of the
scales? B) on both scales? (The three possible responses: the left scale is heavier; balance;
the right scale is heavier).

EXAMPLE (a standard set of weights). N = 4, W[l] = 1, W[2] = 2, W[3] = 2,
W 4] = 5, W0 = 10. Answer A): 3 weightings [W[1] is not necessary].

Detecting particles. NV x N square detectors form a big square. Particles fly above in
straight lines. A particle flying across a detector (including its sides and vertices) some-
times activates it. A detector can be activated by more than one particle at the time. In
such case, the precise number of particles crossing the detector is not detected by it.

Task 7. Given is an integer N and the list of activated detectors. Find the smallest
possible number of particles which could activate these detectors.

EXAMPLE. N = 5, activated detectors: (1,1); (1,4); (5,1); (5,5). Answer: 2.

REMARK. Such tasks must be solved with integer numbers (with vulgar fractions). If
division of numbers is used then there can arise mistakes because of rounding error.

3. Chemistry

3.1. Chemical Formulas

In this section we will not consider real chemical elements and molecules with their con-

crete properties; we will consider mathematical tasks arising in chemistry. Thus, we will
use convenient denotations looking like chemical ones. Denote (conventional) chemical
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elements with capital Latin letters, so the greatest possible number of elements does not
exceed 26 (this is not essential). Let a number of atoms of each element in a molecule be
written after the denotation of the element. Elements in a formula will be written in the
alphabetical order.

So, the molecule of (conventional) water H,O may be written as A2K1 or P1Q?2.

Task 8. Given chemical formulas and the number of atoms of each element in these
formulas find the greatest number of molecules of these types which can be made of these
atoms.

EXAMPLE.
Input: Two formulas: A5B1; B3C?2; three elements: A 20; B 10; C' 3.
Output: 5.
[4(A5B1);1(B3C2)].

REMARK. If the mixture of these chemical substances is a gas then each molecule occu-
pies same volume of space (in the initial approximation). So, the condition of the task is
natural: find the greatest volume occupied.

Task 9. Given: chemical formulae before a reaction and possible chemical formulae
after the reaction. Can such reaction exist from the mathematical standpoint of view? All
listed chemicals must be involved. If it can, then find the smallest possible coefficients
(natural numbers) in the formulae to make balance of chemicals before and after the
reaction.

Solving. Obviously, this task is reduced to a system of linear homogeneous Diophan-
tine equations (a positive solution is to be found). If two equations contain the same
unknown then it can be excluded. So, we obtain one or more equations with different
unknowns. Moving backward we obtain the solution if it exists. Outlines of the algorithm
are seen as follows.

EXAMPLE 1 (iron oxidation).

Input: (before): F'1, O2; (after) F203.

Output: Yes; 4 %« F'1 + 3% 02 = 2 x F203.

Solving of Example 1. The task is X7 % F'1 + X5 * O2 = X3 % F203, the system is
X1 =2%X3,2%x Xy =3 % Xj3.

The first equation has the general solution X; = 2 *x T}, X3 = Tj. Substituting we
obtain: 2 x Xo = 3« T ,hence T7 = 2% Ty, Xo = 3% Ty; X1 =4 xT5; X3 =2x%T5.
Taking the least possible value 75 = 1, we obtain a solution.

REMARK. In real (simple) tasks the following algorithm is also valid. Choose one of
the coefficients as 1. If all other coefficients are defined uniquely then they are rational
numbers. Multiplying all coefficients by the LCM of all denominators we obtain the
required natural coefficients.
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EXAMPLE 2 (conventional).
Input: (before): C2D3, B2C5, B3D2; (after) B3C3D3,C2D1.
Output: Yes; 4« C2D3 + 3« B2C5+ 5+ B3D2 = 7% B3C3D3 + 1« C2D1.

3.2. Structural Chemical Formulae — Chemical Graph Theory

In addition to a chemical formula, it is possible that bonds between atoms (or valence of
each atom) are given. These bonds define a set of graphs. This set can be used to compose
various other tasks.

Task 10. Given a chemical formula (atoms are vertices of a graph) and A) valences
(number of arcs from each vertex) of all atoms or B) a list of atoms which each atom
must be connected with. How many sufficiently different graphs (i.e. different chemicals)
exist?

EXAMPLE A) (isopentans).
Input: formula C5H 12; valence of C' (carbon) is 4; valence of H (hydrogen) is 1.
Answer: 3 [five C atoms are connected with the following arcs: 1) 1-2, 2-3, 34, 4-5;
2) 1-2,2-3, 3-4, 3-5; 3) 1-2, 1-3, 14, 1-5].

3.3. Chemical Reactions

There are M known chemicals; the first N of them are present.

Some of the chemicals can be obtained from other ones (we will only consider reac-
tions that cause two chemicals to become one).

All reactions are given as four numbers B1l, B2, A (all different natural numbers in
1...M) and T (integer number denoting releasing heat, if 7 > 0, or required heat, if
T < 0) indicating the A-th chemical is obtained of B1-th and B2-th ones.

Task 11. Find the most profitable way to obtain the given A0-th chemical of the list
M — N +1...M (if it is possible), i.e., such sequence of reactions B1, B2, A, T that:

—all Asarein M — N + 1... M and different; the last A is AO;

—each B1, B2 are eitherin 1... N or of preceding As;

—all As except AO are used in following reactions;

— the sum of all 7's has the greatest possible value.

3.4. Methods of Chemical Analysis

Task 12. Given the list of T trial chemicals, the list of U chemicals to be detected and the
list of the results R[i, j] (encoded as natural numbers in [1... K], K is a given natural
number too) of reactions of ¢-th chemical of the first list with the j-th chemical of the
second list, 2 =1...N,5=1... M.

Find the smallest possible number of reactions to detect the unknown chemical from
the second list (if it is possible).
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4. Genetics
4.1. Reading Genetic Code

The following situation is a classic example. We recall it for completeness.

Reading genetic code. There are many identical chromosomes and the task is to get to
know the sequence of “letters” written on given chromosome. To read all the information
on a long chromosome is too difficult, so chromosomes are split into pieces which are
sufficiently small to be read easily. The splits are random.

Task 13. Given a set of words. Find the smallest possible length of a word containing
all the given words as sub-words.

Task 14. Given a set of words. How many words of given length containing all the
given words as sub-words exist? (If such words do not exist then output 0).

4.2. Detecting Number of Chromosomes

If two hereditary characters, defined by genes, are positioned on the same chromosome,
then they are inherited simultaneously. Every gene of a child coincides with the corre-
sponding gene of one of its parents. Suppose that some genes are of phenotype character
(can be observed or detected in any way).

Task 15. Given the natural number N > 2 and set of M triples of words of length
N: P1, P2, B fulfilling the condition: each letter B[k] = P1[k] or B[k] = P2[k],
k=1...N.

Find the minimal number of subsets in a decomposition of the set 1... N such that
for every subset S and every triple P1, P2, B the intersection BN S = P1N S or
BNS=P2NS.

REMARK. The researcher does not know the number of chromosomes and order of cod-
ing, so they have arranged ascertained characters arbitrarily.

EXAMPLE.
N =5 M =2;
(TEWPT,EDWBV, TEWPV),(DEWXT, EFWBT, EEW BT).
Answer: 3 [the first set: {1, 4}; the second set: {2, 3}; the third set: {5}].
The answer is the lower boundary for number of chromosomes of this species.
Solving of this task is relatively simple but demands fluency in treating sets.

5. Geology
Restoring the chronological sequence of sedimentary layers (of geological epochs).

Millennium after millennium, sedimentary layers are deposited onto the sea bed. Each
epoch deposits its own layer. Due to the different geological environments, some layers
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are absent in some parts of the sea bed. Researchers have taken samples in different
places, and have separated each sample into layers, denoting all ascertained layers with
letters.

Task 16. Given a set S of words. Each letter can be in each word only once; if one
letter precedes other one, in any word, then the same must occur in other words too. Find
a (long) word W containing these letters only (each letter only once) such that all given
words can be obtained from it by erasing some letters. Is such word unique?

EXAMPLE.

Input: MTUG; TGH; TFH.

Output: not unique [three possible words: MTFUGH; MTUFGH; MTUGFH].

Solution. Probably, the following algorithm is the best.

Denote a set of non-empty words in S as S’. Firstly, S’ = S.

W = empty — word; while S’ is not empty {compare the first letters in all words in
S’: if there is the only one preceding to others then concatenate it to W and avoid it from
all words in S’ else {output “not unique” and stop} }; output W.

This task is relatively simple. But subsequent development in the area could turn some
of the strata upside down. And then the following task arises.

Task 17. In conditions of Task 16, some (less than half of) words can be reversed. The
quest is same.

6. Astronomy

There is a Sun in the center of a solar system and /N Planets rotating around the Sun in
circular orbits. When all inner Planets will overshadow Sun from the standpoint of the
outermost (/Nth) Planet simultaneously?

Choose the following measure of angles: the full rotation (of 27 radian) is equal to 1.

Task 18. Given natural N > 1, initial angles of all planets A[1], ..., A[IN] (as rational
numbers between 0 and 1), periods of rotation of all planets P[1] < --- < P[N] (as
positive rational numbers and the maximal absolute values of angles of overshadowing
MI1],..., M[N — 1] (as (small) positive rational numbers). Find (if it is possible) the
minimum number 7" (a rational number) such that at the moment 7" from initial moment
the following inequalities will be primarily true:

abs(angle Nth-Planet — the-center-of-Sun — K'th-Planet) < M K],
foral K =1...N —1.

REMARK. Actually, the planes containing orbits of different planets and of satellites,
often do not coincide (eclipses of the Moon and of the Sun do not occur every month).
But taking it into account only results in complicating the task too much, because the
lines of intersection of these planes (so-called lines of nodes) constantly change.



Real Processes as Sources for Tasks in Informatics 103

7. Conclusion

We hope that this paper will promote the idea of involving laws, ideas and methods
of sciences into informatics olympiads, making them more engaging for young people,
and attracting contestants’ attention to vast applications of informatics. Accordingly, this
preposition can also inspire a greater interest of young people in learning sciences and
perhaps even in helping to make an appropriate career choice in future.
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