Olympiads in Informatics, 2010, Vol. 4, 113119 113
© 2010 Institute of Mathematics and Informatics, Vilnius

Validating the Security and Stability of the Grader
for a Programming Contest System *

Tocho TOCHEY, Tsvetan BOGDANOV

Sofia University, Bulgaria
J. Bourchier 5, 1164 Sofia, Bulgaria
e-mail: tocho.tochev @ gmail.com, tsvetan.bogdanov@ gmail.com

Abstract. Automated judging systems have had the tough task of ensuring the normal proceeding
of programming contests for a long time. There are numerous ways proposed to secure the exe-
cution of a contestant’s solution and many more actual implementations. In this article we review
some criteria which the core of such systems must meet in order to be considered stable and secure.
We will focus only on the core, as the functions it performs are similar across the variety of existing
systems and it is the part of the system designed specifically to withstand attacks. In fact these cri-
teria were created with their respective test cases in order to verify the grader we used in IOI 2009.

Key words: contests system, judging system, sandbox security, grader security, grader testing,
grader test harness, “black box” testing, IOI 2009.

1. Introduction

Competitions in Informatics are used to evaluate the algorithmic thinking and program-
ming skills of their participants. The first competitions involved judges manually reading
and verifying the source code that the competitors submitted to them. With the evolution
of the contests and of the difficulty of the problems this task became extremely daunting
and potentially inaccurate.

This is how a myriad of automated judging systems were born — Moe, PC2, USACO’s,
Top Coder’s, SpojO, SMOC are only some of the examples.

Of course, this presented new ways for people to interfere with the normal workflow
of the competition by exploiting security loopholes. For example, to be able to run their
programs using more resources than they are allowed, gaining insight about the test data,
gaining access to a solution from another person, hindering the participation of other
competitors, etc. The motivation for such misbehavior can range from material prizes,
such as money, to acceptance in a better university. Therefore, it is important to have the
automated system as secure as possible.

Unfortunately, the current implementations are uniform neither in architecture, nor
in their approach to performing the submit evaluation. In this article we are going to
focus on validating the security and stability of the core part of a programming contest
judging system (the ‘grader’ as we will call it). The term stability stands for verifying the

“This work was partly supported by the Foundation “America for Bulgaria” and the Scientific Research
Fund of Sofia University under the contract No. 247/2010.



114 T. Tochev, T. Bogdanov

correctness of the normal submits, while security focuses on filtering out the malicious
ones.

Similar studies have been made by Forisek (2006), where he gives a classification of
a number of attacks against programming contest systems. On the other hand the criteria
we review are based on their usage in functional tests for SMOC, the system we used for
I0I 2009 and the Bulgarian competitions in informatics. The need to create such a list
arose when we unified the way SMOC and Moe (Mares, 2009) sandbox the contestant’s
program execution. Moreover, any significant refactoring on a grader should be followed
by thorough examination of the resulting module. We have limited the scope of these
criteria to the grader, and will not discuss any attacks related to the parts of the system
visible to the contestants (such as securing workstations, traffic sniffing, activity auditing,
hacking the web server serving the contest system, “Denial of Service”, and others).

Unfortunately, there is no such thing as 100% guarantee that a software solution is
stable and secure. However, there are certain actions that can be taken in order to raise
the confidence in it. The most common are:

1. Peer reviews of the source code.
2. Real-world testing by interaction.
3. Automated testing.

The code reviews are important and can identify problems the other methods cannot.
However, as we are only human, they are not very reliable. Real-world testing by inter-
action, such as online contests, is a nice way to test the overall system. Unfortunately,
it does not cover all cases and organizing such an event is time consuming. In contrast
automated testing is “cheap” (write the test once, run it after you have changed the code),
has good coverage, and can prevent regression bugs. It also allows for a quick inspection
of a new server setup (e.g., different OS).

We will focus only on automated testing, however, it is always preferable to use a
combination of these methods for verifying a programming contest system.

2. Implementing a Test Harness Around the Grader
2.1. Functions of the Grader

As we already stated the grader is the core of a programming contest judging system.
In different systems this component may be comprised of several subcomponents, and it
may have different levels of coupling with the other parts of the system.

In order to create a test harness we first need to know the functions that the grader
performs. We define them as:

1. Compiling the source code.

2. Running the resulting program on some input in “restricted” mode (also known as
sandboxing).

3. Running some checks on the program’s output (for instance check how compatible
the program’s and the judge’s outputs are).



Validating the Security and Stability of the Grader for a Programming Contest System 115

The requirements that the grader must meet include:

1.

Enforcement of the programming task’s resource limits (processor, memory, num-
ber of threads/processes spawned).

Enforcement of unaided program runs — preventing communication with outside
world, usage of temporally files or reads of the judge’s output files; limiting pre-
computing, etc.

. Enforcement of the usage only of tools approved for the competition (for example,

restrict unsanctioned libraries or calls to external programs).

As can be seen the implications of an incorrect or compromised grader can be se-

VEre —

usage of additional resources, obtaining access to the judge’s output files and sim-

ply printing them, sending vital information about the input files back to the contestant,

using

pre-computed values between runs, “blocking” the grader machine and therefore

hindering the whole competition, or in other way altering the results of the competition.

2.2. Ensuring Stability

However, before the grader is secured it must first properly perform its functions in an
environment with no malicious programs. To verify that, we decided to create a simple
task for each of the task types that we support. So we ended up with:

In
cases:

Batch tasks — aplusb: Given 2 integers output their sum.

Reactive tasks — binsearch: Given a range [A, B] guess a number in that range, by
asking “Is it 2?7, and receiving “up” and “down” hints.

Output-only tasks — output: Give a file with a single line.

order to ensure the stability we decided that we must cover at least the following

Correct solution.

For each task type and for each programming language we have a correct solution.
This assures us that all compilers are present and working, as well as that the whole
process runs smoothly.

Wrong answer solution.

One wrong answer solution (for instance “off by one”) per task type. As well as
some solutions that are partially correct.

For the output only task we had a solution which failed the format checker (which
is responsible for accepting the output-only solution for judging).

Time-limiting solution.

For batch and reactive tasks we implemented a test solution that outputs the right
answer and after that falls in an infinite loop. We did this in order to guarantee that
even if the contestant’s program is correct but fails to terminate we assign to it a
time limit exceeded resolution.

Other test solutions that need to be included for reactive tasks are deadlocking ones.
Note that the deadlock might occur in both the contestant’s judge’s programs — an
excessive read would cause the contestant to wait forever and not writing enough
information might cause the judge’s program to block.



116 T. Tochev, T. Bogdanov

It is important to note that writing a solution exceeding the allowed time limit might
be tricky. For example, the following code will be optimized by the compiler “for
(long long i=0;i<(1«50) ;i++) ;” to constant time.

e Memory limit exceeding solution.
We have C solutions with both dynamically allocated memory, and with static al-
location. The amount of memory allocated needs to be slightly over the actual
memory limit. A correct solution which uses slightly less than the actual memory
limit should also be used.
If there is a separate stack limit it should also be checked. And if there is no such
limit, this also needs to be verified (i.e., static allocation should be done in the
stack).

e Runtime error.
There should be several sub-tests for runtime errors. A simple division by zero can
be used to achieve a ‘Floating point exception’. There also needs to be a solution
that has a non-zero exit code as that can also signify runtime error. Furthermore,
it is nice to have a simple invalid memory reference solution as some graders may
filter these separately.

e Use of library functions.
For every allowed language there need to be sample solutions that include permit-
ted and restricted libraries. For example, for C++- there should be checks for st1
(e.g., vector), boost and possibly trl.

2.3. Ensuring Security

As we have stated the grader has three main functions — compilation, program sandbox-
ing, and output evaluation — and each of them can be attacked.

2.3.1. Attacks During Compilation
Attacks aimed at compilation are very dangerous as they can make the grading system
unresponsive or expose the judge’s solution.

e Excessive submit size.
The simplest “attack” is just pre-computing the answers for every possible test
case, and inserting them in what becomes a SOMB source file submitted to the
system. Therefore, the submit file size should be limited. Note that the actual limit
may vary from task to task, since some tasks may allow more precomputing than
others.

e Referencing forbidden files.
Another attack is including files in the compilation that are not supposed to be
included, such as “#include<boost/lambda/lambda . hpp>", or the more
aggressive and dangerous “#include". ./solutions/judgestaskl.cpp"”.

e “Denial of Service” and compile-time exploitation.
Failing to impose reasonable limits (both time and memory) on the compiler can
lead to pretty nasty attacks, such as “#include"/dev/zero"” (running “for-
ever” while consuming more and more memory). A lack of compilation limit can



Validating the Security and Stability of the Grader for a Programming Contest System 117

also be leveraged by the competitor to gather useful data using “Template metapro-
gramming” (e.g., compute the first N factorials or prime numbers, etc.). It is also
possible for the contestant to cause “Denial of Service” by consuming too much
memory or CPU during compilation.

2.3.2. Attacks During Sandboxing
As mentioned graders can use different ways of sandboxing — syscall interception (Mares,
2007), virtualization, linux security modules (Merry, 2009), java virtual machine security
profiles, and others. Depending on the type of sandboxing there are specific ways to try
an attack.

However, the general things that we do not want contestants to do while sandboxed
are:

e Be able to read/write files/directories.
There needs to be a test for at least some of the important files that should be
forbidden — the judge’s solution, additional input files, output files, checkers and
the grader itself. Some attention should also be paid when using syscall inter-
ception and killing the program when it seems to access ‘unneeded’ files as we
found out that the current standard libraries of the programming languages seem
to access some non-obvious ‘files’ (for instance, gsort can require access to
/proc/meminfo).
Also the policy which is taken towards the people who try to open files should
not always be immediate ban, as we have witnessed lots of submits with forgotten
“freopen("mytest.txt", "r", stdin) ;” statements.

e Be able to open sockets/access the network.
It is imperative that the solutions cannot open sockets either as a server, or as a
client. A break in this policy might allow the submit to mimic some important
part of the system or send out vital information about the tests. Furthermore, this
restriction does not only cover internet sockets but also any other protocol used by
the contest system (e.g., unix domain sockets).

e Be able to spawn multiple threads.
We usually want to check that the competitors cannot create multi-threaded ap-
plications as this might give them an unfair advantage. However, there might be
competitions where this is actually encouraged.

e Be able to spawn multiple processes.
The simplest test case here would be just using “fork () ". Although, having mul-
tiple processes poses higher security threat than multiple threads, not every time
that a contestant does an exec call, he should be banned. For example, some people
under Windows use “system ("pause") ;” for debugging and forget to com-
ment it out before submitting.

e Be able to raise their privileges, or be able to break the sandbox.
This is the class of attacks that are most sandbox-specific. The test cases can in-
clude buffer overflow attacks, setuid calls, breaking out of chroot, exploiting
vulnerabilities in the system call wrappers, and others.



118 T. Tochev, T. Bogdanov

Although, it would be interesting to make a collection of such programs, it may be
the case that they have to be tuned a little bit for the different sandbox classes.

e Protecting the judge’s module in reactive tasks.
In reactive tasks the judge’s module must be protected against any attempts on its
integrity. It is important to note that even a well sandboxed contestant’s program
can be successful in an attack if the judge’s module is not written properly (e.g.,
allows buffer overflows from its input). Such an attack is difficult to perform and
close to impossible unless the contestant is provided with the module’s source code.
Unfortunately, it is also hard to create a unified test case.

e Denial of Service during sandboxing
There are a virtually infinite number of attacks in this class. However, there are sev-
eral easy-to-test examples. First, the memory restriction model needs to disallow
allocating any memory above the set limit. Any loophole (e.g., if the memory used
is checked in regular intervals) might lead to exhaustion of the system resources
(CPU or memory) and therefore non-responsiveness of the evaluating machine.
Another check to consider would be outputting too much information (either on
stdout, or on stderr). Although, the competitors might do this unintentionally,
it can also lead to abnormal grader behavior. It can also lead to waste of disk space
which will manifest itself later and should generally be avoided.

2.3.3. Exploits During Checking

The attacks that fall into this category are the result only of the output that the com-
petitor’s program has made. Mostly these exploits are not intentional, and are results
from lack of foresight from the judges. Take for instance the segment “while (i!=-1)
{scanf ("%d", &i); ...} inthejudge’schecker. It will lead to an infinite loop if
the contestant never outputs —1. Therefore some precautions should be taken in terms of
limiting the resources available to the checkers. Obviously, there are no checks that can
cover large portions of the errors that can be done in checkers. However, a test that can be
made with a custom checker that hangs and thus verifies the grader fallback mechanisms,
in case of malfunctioning checker, are working (e.g., this is reported to the judges).

3. Conclusion and Further Work

It would be great if there was a complete checklist that would cover all possible vulnera-
bilities, however, such a thing cannot exist. What we have shown in this article is what we
think are the most important tests cases. Every system for judging programming contests
should be able to pass them in order for it to be considered at least somehow stable and
secure.

Having such a checklist proved very useful for us during the preparation for host-
ing IOI 2009. We needed to organize a series of competitions, and each one of them
introduced new challenges for the grading system — various operating systems, hardware
configurations, as well as minor changes in the judging criteria. As part of the setup for



Validating the Security and Stability of the Grader for a Programming Contest System 119

each of these events we needed to verify the functionality of the grader. Thanks to the test
suite we painlessly exposed several issues and gained confidence in any modifications
that we have made.

Furthermore, some of the test cases can be reused for verifying other functional areas.
Such an example was the protocol change we made between the grader and the dispatch-
ing module. Moreover, we used the test solutions as model contestants’ submissions to
create load tests. However, notice that a comprehensive load test also includes solutions
specific to the competition. Of course, for any large competition (such as the IOI) the host
also needs to run a series of other tests.

For the benefit of anyone interested, we provide our tests as part of the SMOC’s source
code'. However, it seems to be a good idea to setup “a universal grader test repository",
open to everyone, accepting proposals from contest system maintainers, in order not to
duplicate the effort that goes into testing a grader.

Perhaps this work can be extended and can lead to a number of stability and security
checks that every IOI host system can be verified against.

References

Forisek, M. (2006). Security of programming contest systems. In: Information Technologies at School, 553—
563.

Mares, M, (2007). Perspectives on grading systems. Olympiads in Informatics, 1, 124-130.

Mares, M. (2009). Moe — design of a modular grading system. Olympiads in Informatics, 3, 60-66.

Merry, B. (2009). Using a Linux security module for contest security. Olympiads in Informatics, 3, 67-73.

T. Tochev is a master student in artificial intelligence at Sofia Univer-
sity. Former competitor himself, he helped with the technical organiza-
tion of many Bulgarian competitions in informatics and some interna-
tional ones — JBOI 2008, BOI 2008, and IOI 2009.

T. Bogdanov is currently completing his masters in software engineer-
ing at Sofia University. Involved with grading systems since the Balkan
Olympiad in informatics in 2004, he has helped with grading many of
the national high school competitions in informatics and IOI 2009.

1https://svn.openfmi.net/pcms/trunk/test/grader/.



	Infol058
	INFOL058

