
Olympiads in Informatics, 2011, Vol. 5, 103–112 103
© 2011 Vilnius University

Measuring the Startup Time of a Java Virtual
Machine

Bruce MERRY1, Carl HULTQUIST2

1ARM Ltd.
110 Fulbourn Road, Cambridge, CB1 9NJ, England

2D.E. Shaw & Co.(U.K) Ltd.
55 Baker Street, London, W1U 8EW, England

e-mail: bmerry@gmail.com, chultquist@gmail.com

Abstract. For many olympiad problems, an execution time limit is used to constrain the classes of
algorithms that will be accepted. While Just In Time (JIT) technology allows Java bytecode to be
executed at a speed comparable to native code, the Sun Java Virtual Machine has a reputation for
a large startup time that can significantly affect measured execution time. We present a technique
for measuring the startup time of the virtual machine for each execution run, so that it may be
subtracted from the total execution time. We found that the startup time was lower than expected
(about 70ms), with little variation between programs or runs.

Key words: Java, startup time, time limit.

1. Introduction

Numerous programming contests allow Java to be used as a programming language
(ICPC, 2010; Kolstad, 2009; Merry et al., 2008; Tani and Moriya, 2008; Trefz, 2007).
Additionally, it is common practise in programming contests to impose an execution time
limit on solutions, both to protect the system against long-running solutions and to en-
force some degree of algorithm efficiency on solutions. When multiple programming
languages are made available, the question that naturally arises is whether the choice of
language affects execution time and if so, whether this is fair to contestants.

Java is different from C-like languages in that it is typically compiled to bytecode
and run in an interpreter, rather than compiled directly to machine code. The de-facto
standard interpreter is the Sun Java Virtual Machine (JVM). While the execution speed
of such interpreted code remains a concern (even with technologies such as Just-in-Time
(JIT) compilation), this paper specifically addresses startup overhead. In evaluating Java
for the International Olympiad in Informatics, it has previously been noted (Pohl, 2006)
that the JVM can take anywhere up to a second to start, and that the startup time is highly
variable.

To address this, the South African Computer Olympiad (SACO) grading system mea-
sures the startup time each time a Java solution is run, and subtracts this from the total
execution time. Section 2 describes how this is achieved.



104 B. Merry, C. Hultquist

In order to evaluate the effectiveness of our wrapper, we are interested in the following
questions:

• What is the average startup time of a C++ program?
• What is the average startup time of a Java program?
• Does the Java wrapper have any impact on execution time?
• Is the startup time of a Java program greater than that of a C++ program?
• Is the solution time of an empty Java program greater than that of a C++ program?
• Does the choice of program (e.g., a simple versus a complex one) impact the startup

time?
• Does the solution time computed using our wrapper have less variation than exe-

cution time? In other words, does our wrapper lead to more consistent timing?

Section 3 explains how we tested the effectiveness of our technique, and we report the
results of our tests in Section 4. We finish with conclusions in Section 5.

2. Measuring Startup Time

A simple approach to measuring startup time would simply be to run a trivial program
multiple times to determine an average. However, the startup time could vary from pro-
gram to program or even run to run, and so the average is only a crude approximation.
The measured average would also only be valid for the combination of hardware and
software and so would need to be recalibrated each time a system update was done. It
could also vary over time even if the system is not changed, due to factors such as file
system fragmentation.

Instead, we measure the startup time of each run as it is happening. To accomplish
this, we do not launch the user’s Java class directly. Instead, we launch a helper class that
does the following:

1. Uses reflection to look up the main method in the user’s class.
2. Calls a native function we have written that measures the time elapsed so far, and

passes it to the process that manages time limit enforcement.
3. Invokes the main method in the user’s class.

We discuss these steps in detail in the following subsections.

2.1. Class Lookup

Unlike languages such as C, Java provides reflection mechanisms that allow classes and
methods to be looked up by name at run time. The name of the user’s class is passed
to the wrapper on the command-line, and its main method is located with the following
code:

Class<?> childClass;
Method childMain;
Object childArgs;



Measuring the Startup Time of a Java Virtual Machine 105

childClass = Class.forName(args[0], false,
JavaWrapper.class.getClassLoader());

childMain = childClass.getMethod("main", String[].class);
childArgs = Arrays.copyOfRange(args, 1, args.length);

It is not strictly necessary to do this class lookup dynamically; one could instead
generate a wrapper on the fly for each possible user class name. We have chosen to use
reflection largely for convenience.

2.2. Reporting Startup Time

Standard Java libraries do not provide a means of determining the CPU time consumed
so far. Instead, we use Java Native Interface (JNI), a mechanism that allows Java methods
to be implemented in a native language such as C. This C code is compiled into a shared
object which the JVM loads at run time.

Since our evaluation system is based on GNU/Linux, our native code calls
getrusage to determine the CPU time that has been consumed by startup overheads.
It then needs to report this to the parent process (which is doing timing and enforcing re-
source limits), in a secure way. We chose to have the parent process open a pipe between
parent and child when the child is created, with a fixed file descriptor number (3). The
native code running in the child writes the startup time to this pipe, and then closes it to
ensure that the user’s code cannot access it.

2.3. Launching the User’s Class

Having measured all startup overheads to this point, we are ready to launch the user’s
code. This is done by calling

childMain.invoke(null, childArgs).

This passes any remaining command-line arguments to the child. Most olympiad
problems do not process command-line arguments, but doing so makes the wrapper
general-purpose.

2.4. Exception Handling

The sample code listed above does not include any exception handling. There is relatively
little exception handling required, because an exception will usually indicate a fault in the
user’s submission (whether because their code threw an exception, or their class didn’t
have a main method with the appropriate signature or permissions, or some other re-
flection issue), and the submission will score zero with the exact reason being irrelevant.
There is one special case: because the parent process is waiting for the child to inform it
of the startup time, this must be reported even if the class lookup throws an exception.



106 B. Merry, C. Hultquist

Our use of reflection causes exception messages to be different from those that
would be seen had the code been run outside the wrapper. This is because ex-
ceptions thrown by the invoked method are wrapped in another exception, such as
InvocationTargetException, to allow exception handlers to distinguish them
from exceptions in the invocation process itself. To make our wrapper more transparent,
we catch these exceptions and re-throw the underlying exception, causing the error log to
match what would have appeared in the absence of the wrapper.

2.5. Security Considerations

No matter how well this scheme works, it would be of dubious practical value if contes-
tant code could either perform computation in the nominal “startup” time (thus bypassing
the resource limit), or was able to report a false startup time to the parent process. In this
section we consider some possible ways that user code might attack the system.

First we consider whether user code can execute during “startup” time. Because we
load the user’s class before recording the startup time (so that the time taken for this re-
flection process does not count against the user), we must not allow any user initialisation
code, such as a static class initialiser, to be run during this loading. This is done by pass-
ing false to Class.forName, which indicates that the class should not be initialised
at this point. The class is instead initialised when the main method is invoked.

Since no user code is able to run before the startup time is reported to the parent, it
cannot interfere with the reporting process. It cannot even send false data along the same
pipe, because the native code that does the reporting closes the pipe before it returns.

One other risk is the presence of the native code: the user’s code can cause it to execute
again (for example, by calling the main method in the wrapper class), and so it must be
made robust to repeated execution.

3. Test Setup

In order to test the usage of our wrapper, we used the solutions to several olympiad
problems to generate statistics about run time under various scenarios. Specifically, we
took the following measurements:

• Execution time – the total time taken by the process, including any startup and
wrapperoverheads.

• Startup time – the startup time measured by our wrapper, prior to the user’s code
being launched.

• Solution time – the time taken by the user’s code, computed as the difference be-
tween execution time and startup time.

Where our wrapper has not been used, only execution time can be measured directly.
Our test machine has a 2.16G Hz Core 2 Duo T7400, with 1GB RAM, and runs

a Linux 2.6.36 64-bit preemptable kernel and 64-bit Gentoo OS. C++ solutions were
compiled with GCC 4.4.5 with options -O2 -s -static while Java solutions were
compiled and executed with Sun Java SE Runtime Environment 1.6.0_24-b07.



Measuring the Startup Time of a Java Virtual Machine 107

The C++ and Java solutions for each problem are functionally identical, so as to min-
imise the effects of different algorithms impacting our measurements. We also include
a special empty program which, as its name implies, does no processing and returns
immediately. The C++ and Java empty programs are as follows:

// C++
int main()
{

return 0;
}

// Java
public class empty
{

public static void main(String[] args)
{
}

}

Since we are aiming to measure startup time rather than solution speed, all our tests
were done with very small input files for which processing is expected to take almost zero
time.

For statistical significance, each combination of solution, language, and the presence
or absence of the wrapper was run 200 times.

One limitation in our approach for collecting test data is the quantisation of the results
returned by the getrusage system call. The kernel on our test system has a tick fre-
quency of 1000 Hz, which quantises our results to 1 ms buckets. We have not attempted
to take these quantisation effects into account when applying statistical tests, and so p

values quoted may be inaccurate.

4. Results

The figures below show box plots. Each box represents the inter-quartile range, the bar
inside the box represents the median, and the small circles represent outliers (the 1 ms
quantisation causes more data points to be flagged as outliers than might otherwise be the
case).

We now address the questions listed in Section 1. Firstly we consider C++: every run
on all our test programs reported an execution time of 1 ms. It is likely that less than 1 ms
was required, but that the 1 ms quantisation caused everything to be rounded up to 1 ms.

We can estimate Java startup time without the use of our wrapper. Since our empty
program performs no computation, its execution time is essentially the startup time. Fig-
ures 1 and 2 show that, on average:



108 B. Merry, C. Hultquist

Fig. 1. Execution time for various Java programs, without the use of our wrapper.

Fig. 2. Solution time for various Java programs with their sample test-case as input, after subtracting the mea-
sured startup time of the JVM.



Measuring the Startup Time of a Java Virtual Machine 109

• Java with no wrapper has an execution time of 70.0 ms.
• Java with our wrapper has an execution time of 71.8 ms.

In each of these data-sets, the standard deviation of the measurements is less than
0.5 ms and is thus unreliable in telling us how the individual times vary, due to the quan-
tisation of our measurements to 1 ms buckets. Figure 3 gives an alternative view of the
effect of our wrapper, showing the average startup time and solution time for each pro-
gram. It shows that of the 71.8 ms average time for the empty program, only 1.8 ms is
solution time and the remainder is startup time.

These data also address our question of whether the use of our wrapper impacts exe-
cution time. The mean execution time for the empty Java program is clearly greater than
that of the same program without our wrapper, and a t-test confirms that this finding is
statistically significant with p < 0.001.

Furthermore, it is clear both from the data and conventional wisdom that the startup
time of a Java program is greater than that of a C++ program – and our data shows
that this is true even when taking the startup time into account. Applying a t-test to our
data, we find that the solution time of the wrapped empty Java program (1.8 ms) is
statistically significantly more than the 1 ms execution time of the empty C++ program,
with p < 0.001. Similarly, the execution time of the unwrapped empty Java program
(70 ms) is also statistically significantly more than that of C++, again with p < 0.001.

The figures also show a clear variation in execution time between the programs; from
Fig. 3 and 4 it is clear that this variation is part of the solution time, rather than the
startup time. Investigation showed that the three slow programs (bonuses, camera
and path) all used the Scanner class for parsing input, while the remaining pro-
grams did not. This class is more convenient than other methods of parsing input (such as

Fig. 3. The average startup time and solution time for various Java programs.



110 B. Merry, C. Hultquist

Fig. 4. Startup time measured by our Java wrapper for various Java programs.

StringTokenizer), but apparently this convenience comes at a price in initialisation
time.

Finally, we address the question of whether subtracting the startup time for a Java
program reduces the variation in reported run time. From Figs. 1 and 2, it appears that
the standard deviation in run time for each program has not improved after subtracting
the startup time. This is further supported by the box plots in Fig. 4, which show that the
measured startup time is almost constant at 70 ms. However, given that all the standard
deviations in these data sets are less than 1 ms, we cannot draw any definite conclusions
due to the 1 ms quantisation of our measurements.

5. Conclusions

Prior experience, both our own and that reported by Pohl (2006), led us to expect that
the startup time of Java programs would be significant and highly variable, and that our
technique would be valuable for programming contests using Java with time limits of up
to a few seconds.

We were thus surprised to find that the startup time we measured was only around
70 ms, and highly consistent across different programs and different runs. Indeed, the
variation observed between programs was not due to the startup time of the JVM, but to
run time consumed by the Scanner class. It is not currently known whether this small
and consistent startup time is due to improvements in the Virtual Machine implementation
since 2006, or to changes in the underlying environment (faster CPUs and larger caches).

Given the consistency of the measured startup time, it seems that a simple solution of
applying a fixed correction to all Java run times is likely to be sufficient. Nevertheless,



Measuring the Startup Time of a Java Virtual Machine 111

our method is particularly convenient since it does not require separate calibration. It
also adds only a few milliseconds to the total execution time, and thus will have minimal
impact on the rate at which solutions can be judged.

After correcting for the JVM startup time, a trivial Java program runs almost as fast
as a trivial C++ program – the difference is less than the quantisation error caused by
operating system time-slicing. We thus feel confident that while execution speed may
still be a concern (and is beyond the scope of this paper), startup time is no longer an
issue when supporting Java as a programming language in a contest.

5.1. Future Work

Although we have addressed the issue of startup time in Java programs, there are sev-
eral additional avenues for research that would assist in supporting the more widespread
adoption of Java in programming contests:

• Class-specific wrapper. In Section 2.1 we described how we use reflection to look
up the user’s class, and noted that an alternative approach would be to generate a
wrapper on the fly and avoid the reflective lookup. This approach may reduce the
additional run time overhead incurred by the wrapper.

• Shutdown time. Although our technique focuses on reducing startup time, a simi-
lar approach might be used to measure shutdown time (that is, the time required for
the JVM to terminate after the user’s program has completed).

• Preloading of key classes. Our analysis identified that the use of certain classes
(such as Scanner) can have a measurable impact on the startup time of a pro-
gram. One possible means of ameliorating the effect of such classes would be to
preload them in the wrapper, and thus separate their initialisation time from the
time attributable to the user’s program. Further investigation would be required to
determine whether this overhead is for class initialisation or is per-instance.

• JVM priming. The JVM is well known for performing just-in-time compilation
and adaptive optimisation of executing bytecode, which can result in fully opti-
mised machine code only being executed at some indeterminate point in the pro-
gram’s execution. Java programs may therefore be at a disadvantage to those writ-
ten in other languages, such as C++ or Pascal, where program code is precompiled
straight to optimised machine code. One possible means of reducing this disparity
would be to “prime” the JVM by executing the Java program many times within the
same JVM instance, thus giving it an opportunity toe fully optimise and compile
all the code. Care would, however, need to be taken in such an approach to ensure
that the user’s program did not store any information for use in successive runs.

• Other JVM implementations. This paper has focused on the Sun JVM; it would
be interesting to perform similar analysis on other JVM implementations.



112 B. Merry, C. Hultquist

References

ICPC. ICPCWiki: World finals rules. (2010).
http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=World%20Finals%20Rules.
http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=World%20Finals%20Rules.

Kolstad, R. (2009). Infrastructure for contest task development. Olympiads in Informatics, 3, 38–59.
Merry, B., Gallotta, M., Hultquist, C. (2008). Challenges in running a computer olympiad in South Africa.

Olympiads in Informatics, 2, 105–114.
Pohl, W. (2006). IOI Newsletter, 1.

http://ioinformatics.org/newsletters/html/ioinews6.htm.
http://ioinformatics.org/newsletters/html/ioinews6.htm.

Tani, S., Moriya, E. (2008). Japanese olympiad in informatics. Olympiads in Informatics, 2, 163–170.
Trefz, N. (2007). The coding window – TopCoder wiki.

http://www.topcoder.com/wiki/display/tc/The+Coding+Window.
http://www.topcoder.com/wiki/display/tc/The+Coding+Window.

B. Merry took part in the IOI from 1996 to 2001, winning two gold
medals. Since then he has been involved in numerous programming
contests, as well as South Africa’s IOI training programme. He obtained
his PhD in computer science from the University of Cape Town and is
now a software engineer at ARM.

C. Hultquist took part in the IOI from 1999 to 2000, winning a sil-
ver medal and a bronze medal. He has since taken part in and organ-
ised several other programming contests, including active involvement
in South Africa’s IOI training programme. Carl obtained his PhD in
computer science from the University of Cape Town and is currently
working as a software engineer for D.E. Shaw.


