
Olympiads in Informatics, 2012, Vol. 6, 133–147 133
© 2012 Vilnius University

REPORTS

An Experience on the Organization of the First
Spanish Parallel Programming Contest

Francisco ALMEIDA1, Vicente BLANCO PÉREZ1, Javier CUENCA2,
Ricardo FERNÁNDEZ-PASCUAL2, Ginés GARCÍA-MATEOS3,
Domingo GIMÉNEZ3, José GUILLÉN4,
Juan Alejandro PALOMINO BENITO4, María-Eugenia REQUENA4,
José RANILLA5

1Departamento de Estadística, I.O y Computación, Universidad de La Laguna
38201 Tenerife, Spain

2Departamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia
30071 Murcia, Spain

3Departamento de Informática y Sistemas, Universidad de Murcia
Campus de Espinardo, 30071 Murcia, Spain

4Centro de Supercomputación, Fundación Parque Científico, Ctra. Madrid km. 388, Complejo
Espinardo, 30100 Murcia, Spain
5Departamento de Informática, Universidad de Oviedo
Campus de Viesques, 33204 Gijón, Spain

e-mail: {falmeida,vicente.blanco}@ull.es, jcuenca@um.es, r.fernandez@ditec.um.es,
{ginesgm,domingo}@um.es, {jguillen,jpalomino,mrequena}@parquecientificomurcia.es,
ranilla@uniovi.es

Abstract. The first Spanish Parallel Programming Contest was organized in September 2011 within
the Jornadas de Paralelismo, in La Laguna, Spain. The aim of the contest is to disseminate paral-
lelism among the participants and Computer Science students who can use the material generated
in the contest for educational purposes. The contest is similar to other sequential and parallel pro-
gramming contests in which teams participate by solving a set of problems in a given time. But
the Spanish contest has characteristics which distinguish it from other contests: an automatic tool
(Mooshak) is used to validate the solutions and the tool has been modified to send the solutions to
a cluster of nodes and to obtain the classification based on the speed-ups achieved; candidates can
participate both in situ and online; a classification with the records for each problem is maintained
on the web page of the contest, with explanations and codes of the record solutions so that the page
can be used for educational purposes. This paper summarizes the experience and perspectives of
the contest.

Key words: programming contests, online judge, parallel programming.



134 F. Almeida et al.

1. Introduction

With the evolution of technology parallel computing is becoming increasingly popular. At
present, the basic computing systems are parallel (laptops and desktops are dual, quadcore
or even hexacore, possibly with hyperthreading and programmable graphics cards) and so
are clusters and supercomputers, which are composed of multicore nodes. This situation
has led to a continuous increase in parallel computing courses in computing curricula
(Meder et al., 2008), and to some initiatives of the IEEE Technical Committee on Parallel
Processing (IEEE TCPP, 2011), such as a proposal of parallel computing curriculum with
a number of topics to be adopted in Computer Science studies.

In this context, the first Spanish Parallel Programming Contest (SPPC) was organized
in September 2011 in the Jornadas de Paralelismo (JP, 2011). Our goal is to spread
parallelism and at the same time that the material generated in the contest can be used for
educational purpose in parallel computing courses.

Computing competitions can be organized in different ways, in a variety of fields
and with different goals (Dagienė, 2010; Hakulinen, 2011). In particular, programming
contests are useful for increasing the students interest for programming and for enhanc-
ing their programming abilities. So, there are a number of Computer Olympiads all over
the world, with the main events being the International Olympiad in Informatics (IOI,
2011) and the ACM Programming Contest (ACM ICPC). Furthermore, contests are suc-
cessfully used for educational purposes in programming courses (Fernández Alemán,
2011; García-Mateos and Alemán, 2009; Lawrence, 2004).

There are also a number of tools for the organization of programming contests (Kol-
stad, 2009). Some of them maintain a set of problems to practice with (UVa Online Judge)
or allow the creation of contests (Leal and Silva, 2003).

Associated to the increasing popularity of parallelism, a number of competitions de-
voted to the topic have emerged in the last years, for example the Student Cluster Com-
petition (SCC) and the Marathon of Parallel Programming (MPP). The Spanish Parallel
Programming Contest follows this line, but it has some distinguishing features, which we
explain below:

• The teams can participate in two ways (in situ and online) and there are two differ-
ent classifications. This allows the teams to participate without needing to physi-
cally attend the Jornadas de Paralelismo.

• The tool Mooshak (Leal and Silva, 2003) has been modified to send the solutions
provided by the teams to a cluster of four nodes, each with eight cores, and to
obtain the classification considering the speed-ups achieved.

• A classification of records for all the problems of the different editions is main-
tained on the web of the contest (SPPC), with the explanation and code of the best
solutions. In this way the page can serve as an educational resource for parallel
programming courses.

The rest of the paper is organized as follows. Section 2 details the general organization
of the contest. The problems in the first edition are commented on in Section 3. Section 4
describes how the first edition of the contest ran. Finally, future perspectives are discussed
in Section 5.



An Experience on the Organization of the First Spanish Parallel Programming Contest 135

2. General Organization

The contest has some organization aspects similar to those of other sequential and parallel
programming contests:

• As in other contests, teams of three students and a teacher who acts as a coach are
encouraged to participate. In the ACM Programming Contest (ACM ICPC) and the
Marathon of Parallel Programming (MPP) the teams are of three components, and
in the Student Cluster Competition (SCC), with a longer running time, the teams
have six components and are supported by a computing company.

• As in the ACM competition and the Marathon, the Spanish contest lasts a short
time (four hours), and the teams must solve a number of programming problems in
that time.

• In our case (and also in the Marathon), a sequential solution of each problem is
provided, and the teams generate parallel solutions with the aim of reducing the
execution time of the corresponding sequential solution. The programs are devel-
oped in C, and the parallel environments OpenMP (Chandra et al., 2001) and MPI
(Snir and Gropp, 1998) can be used to develop the corresponding shared-memory
and message-passing versions. MPI and OpenMP can also be combined to further
reduce the execution time using hybrid parallelism.

• The problems and the sequential solutions are selected to cover different algorith-
mic paradigms and a variety of computational costs. The task selection is explained
in the next section.

The main difference of the Spanish contest with respect to others is the evaluation
system, which is done automatically and in real time, and allows in situ and online par-
ticipation.

The cluster Arabí of the Supercomputing Centre of the Scientific Park Foundation
of Murcia (SCC) is used for the evaluation of the solutions. The cluster comprises 102
nodes, each with eight cores, and four nodes (a total of 32 cores) are used in the contest.
The SCC facilitates the occasional use of this subcluster for training, and it is used in
the contest for the preparation and evaluation of the solutions provided to the teams, for
a warm-up session and for the celebration of the contest. A job queue system is used to
ensure only one program runs in the subcluster at a particular moment, which is necessary
for the calculation of speed-ups and the classification.

The tool Mooshak (Leal and Silva, 2003) is installed in a virtual machine from which
the solutions generated by the teams are sent to the queue in the cluster. It has been
necessary to make some modifications in Mooshak to adapt it to the characteristics of the
contest: Mooshak is used in conjunction with the subcluster of Arabí, and a new form of
obtaining the classification based on speed-ups has been added to Mooshak.

The teams send their solutions to Mooshak, and it connects to a host associated to
Arabí, where the programs are compiled and sent to the queue, from where the jobs are
sent to the part of the subcluster specified in the submitted job. The solution is validated
in the host by comparing it with the solution given by the sequential program provided
by the organization. Finally, the host sends back to the Mooshak acknowledgement of the



136 F. Almeida et al.

correctness of the solution. In case of error, extra information is provided (compilation or
execution error, too many resources required, etc).

The classification is computed based on the speed-ups: the execution time of the se-
quential program divided by that of the parallel program (Sp = ts/tp) (Grama et al.,
2003). In our case ts is the time obtained for the test input with the sequential solution
provided by the organization, and tp the execution time for the same input with the pro-
gram sent by the contestants. In that way the speed-up would be one for solutions which
do not improve the sequential program. For each problem, the mark assigned to a correct
solution could be max{Sp − 1, 0}, so that solutions which do not reduce the sequential
execution time have no positive mark, and positive marks begin from zero. The teams
can send a maximum of ten solutions to each problem without penalization. After that,
each additional submission means one point penalization, and the mark for the problem
is max{max{Sp} − 1 − max{s − 10, 0}, 0}, where s stands for the number of submis-
sions for that problem and max{Sp} represents the maximum speed-up achieved in the
s submissions. For a problem for which some team has a mark higher than 15, the marks
of each team are linearly scaled so that the maximum mark is 15. This is to avoid very
high marks (which could be obtained with an efficient use of the system combined with
an improvement of the sequential solution) and to avoid some problems having an ex-
cessive weighting in the final score (problems with different algorithmic complexity have
different parallelisation complexity). The final score for each team is obtained by adding
up the marks in the problems for which they have provided some valid solution.

For each problem a brief description of the problem together with an example input
and an execution scheme and the sequential solution are provided. The input provided is
similar in number and form of the entries and in the execution time to that of the input
used for automatic validation and scoring. So, the contestants can use this entry to evalu-
ate their solutions in their laptop or in a parallel system to which access is provided by the
local organization. The execution scheme is a C program (file scheme.c) which can not
be modified. The I/O are performed via this program, which has a limit for the execution
time and generates the solution in a file which is compared for validation with the output
of the sequential program. The scheme is compiled and linked by the system with the file
with the sequential function (sec.c). The resulting executable is run through MPI, with
only one MPI process and one OpenMP thread, so it is considered the sequential version
to compare against. The file sec.c has a heading of the form:

/*
CPP_NUM_CORES = 1
CPP_PROCESSES_PER_NODE 1
CPP_PROBLEM=mm
*/

where CPP_NUM_CORES establishes the number of cores to use (maximum 32),
CPP_PROCESSES_PER_NODE the number of MPI processes to run on each node,
and CPP_PROBLEM the name of the problem. The example corresponds to the head-
ing of the sequential program, and so the number of cores is 1 and the number of



An Experience on the Organization of the First Spanish Parallel Programming Contest 137

processes per node is 1. The teams modify the sequential function to make it par-
allel and send the file with the new function and the modified heading to use more
cores and MPI and/or OpenMP. The number of nodes reserved to run the program is
NUM NODES = �(CPP NUM CORES − 1)/8� + 1, and the number of MPI
processes NUM PRO = NUM NODES ∗ CPP PROCESSES PER NODE.
Inside each MPI process, the number of OpenMP threads (NUM THR) is set
with the function set omp num threads. So, a maximum of 32 cores can be used
by a parallel program, and it is possible to use message-passing parallelism
(CPP NUM CORES > 1 or CPP PROCESSES PER NODE > 1 or both,
and NUM THR = 1), shared-memory parallelism (CPP NUM CORES � 8 and
NUM THR > 1), or hybrid MPI+OpenMP parallelism. Several combinations can be
used to attempt to achieve the highest speed-up.

3. Problems in the First Spanish Parallel Programming Contest

When designing a programming contest it is necessary to carefully select the problems to
work with. There are some papers dedicated to tasks selection in computing competitions
(Burton and Hiron, 2008; Vasiga et al., 2008; Hakulinen, 2011). For a parallel program-
ming contest the problems selection has some particularities that differentiates it from
other computing contests. In this section the problems used in the First Spanish Paral-
lel Programming Contest are shown and the criteria for problem selection are discussed,
comparing them with the recommendations in the literature.

Five problems were proposed to be solved in four hours (to generate parallel solutions
and adapt them to the computational cluster). They can be found on the web page of the
contest (SPPC). Next we enumerate and discuss the problems:

A Multiplication of matrices with rectangular holes: Two square real matrices are
multiplied. The matrices have rectangles of zeros. The rectangles can overlap.
The sequential solution provided uses the zeros structure of the matrices to ac-
celerate the computation. The contestants can parallelize that sequential version
or develop the parallel program from a different sequential version. For example,
they could use a dense or a sparse matrix multiplication version, but the matrices
are not dense or sparse, and with those approaches the parallel version may be
far from satisfactory speed-ups. Furthermore, the sequential version provided does
not optimize memory access, and in a multiplication AB, matrix B is accessed by
columns, which can be improved just by transposing matrix B and accessing it by
rows.

B Live game with variable neighborhood: This is a live game where the value in
each position depends on the values in the neighboring positions in the previous
generation, but in different generations the neighborhood varies, with the neighbors
being the positions at a given Manhattan distance.
The sequential program follows an iterative scheme, and parallelisation can be
achieved only inside each iteration. The computational cost and the memory ac-



138 F. Almeida et al.

cess in each iteration have order O
(
n2

)
, which makes it difficult to obtain highly

efficient parallel versions.
C Obtain values in given positions after sorting: An array of integers is given, together

with a set of positions. The problem is to obtain the values in these positions when
the values in the array are sorted.
The sequential solution sorts initially the positions, and then obtains the values in
those positions by applying a partition scheme recursively. The quicksort pivoting
strategy is applied to obtain the element in the middle position, and then the same
method is applied to the left and right parts of the integer values and with the
left and right parts of the positions. Obviously, it is possible to obtain a parallel
solution just by sorting the array of integers, but the execution time would be higher
than that of the solution provided, and consequently the speed-up achieved (if any)
would not be very high.

D Multiply four dense square matrices.
This is the easiest problem in the contest. Three typical and naive matrix multipli-
cations are performed. It is possible to optimize the memory access as indicated for
problem A, and the parallelization of the matrix multiplication gives high speed-up
(the computational cost is O

(
n3

)
and the access cost is O

(
n2

)
). Furthermore, two

of the multiplications can be done in parallel, which would allow a better use of
the cluster, and consequently higher speed-up.

E Knapsack problem with affinities: We have a number of knapsacks with a certain
capacity each, and a set of objects with a certain weight and with affinities between
the objects. The objective is to obtain the assignation of objects to the knapsacks
with the highest total affinity. The weight restrictions must be fulfilled, and the total
affinity is the sum of the affinities between objects assigned to the same knapsack.
The sequential solution follows a backtracking scheme. It is possible to obtain
better sequential solutions, with a better backtracking or with branch and bound
algorithms, but the best solution depends on input, and the entries to be solved are
not very large because it would produce a very long execution time. So, possibly
the best approach is to parallelize the backtracking algorithm by generating a set
of subproblems with all the possible assignations of some objects, and to assign a
number of subproblems to different processes or threads.

The five problems follow well known algorithmic schemes and can be parallelized
with parallel schemes which are explained in parallelism books (Almeida et al., 2008;
Grama et al., 2003; Quinn, 2004). The targeted contestants (final years undergraduate
and master and doctoral students) should know the sequential schemes and the basic
parallel algorithms. So, the parallelization is not a big problem . . . if they did not have
a time limit of four hours. Furthermore, access to internet was allowed in the contest for
a number of reasons: the possibility of participation online, the use of the tool Mooshak
through internet, the need for access to a remote parallel system and because at present
most of the bibliography is consulted on internet. So, the problems should not be typical
problems or they can be well known problems but that should be modified to achieve
the maximum performance in the system where the contest runs. The solutions must be



An Experience on the Organization of the First Spanish Parallel Programming Contest 139

Table 1

Estimated maximum speed-ups achievable, the maximum with sequential, message-passing and shared-memory
optimization, and the records in the contest and at February 8, 2012

A B C D E

Sequential 3 1 1.2 4 2

message-passing 3 1.5 1.5 3.5 3.5

shared-memory 6 6 4 7 6

maximum estimated speed-up 54 9 7.2 98 42

Record in the contest 17.09 2.68 25.88

seq. shared seq.

shared message

shared

Record at February 8, 2012 19.5 6.23 2.55 45.13 5.9

message seq. shared seq. message

shared shared message shared

shared

correct (they are checked automatically), but the goal is to achieve a high speed-up, and
for that it is necessary not only to solve the problems in parallel, but also to optimize the
sequential program and to adapt the parallel program to the computational system. Even
though all the sequential programs follow well known algorithmic schemes, the solutions
for A, B and D use a regular scheme (a number of loops) while the solutions of C and E
have a more complex structure, and consequently it should be more difficult to obtain a
parallel program for them.

Roughly speaking, we can estimate the ease of parallelism of each problem (the max-
imum expected speed-up) by multiplying the speed-up expected by sequential optimiza-
tion, by the use of multiple nodes with message-passing and by the use of all the cores
in a node. The maximum estimated speed-up is shown in Table 1. The values in the table
represent estimations based on the empirical knowledge of the members of the organizing
committee (they are not experimental speed-ups obtained by running efficient programs).
The record speed-up for each problem in the contest and at February 8, 2012 are also
shown, together with the combination of optimizations used in each record. Due to the
difference between the estimated speed-ups and those of the records, there is space for
further improvement. The different sources for improvement are commented:

• The sequential speed-up corresponds to improvements in the sequential program.
As mentioned, the matrix multiplications (problems A and D) can be improved
by changing the data access, transposing one of the matrices or designing an al-
gorithm by blocks. In problem A the matrices are not dense, and so the estimated
improvement is lower. In problem C the level of recursion can be changed, and so
slightly reduce the execution time. For problem E the source of improvement is non
predictable, because it depends on the input, but some changes can be done in the
backtracking, or alternative methods can be used, and so a value of 2 is assigned to
the sequential speed-up.



140 F. Almeida et al.

• The maximum message-passing speed-up is 4, because the cluster comprises 4
cores which work together with message-passing. Of course, the complete system
(32 cores) can be used with MPI processes and message-passing, but the speed-up
obtained with the use of cores in the same node is included in the shared-memory
speed-up.
Problems A, D and E have the highest computational cost, and so the highest speed-
up is assigned to them. The value assigned is less than 4 due to the cost of commu-
nications. Problem A is a matrix multiplication, which is easily parallelizable, but
the structure of the matrices, with rectangles of zeros, reduces the computational
cost and hence the achievable speed-up. Problems B and C have lower costs, and it
will be more difficult to obtain high speed-up with message-passing programs.

• The number of cores per node is 8, and this is the maximum shared-memory speed-
up.
The speed-up in shared memory is relatively easier to obtain, particularly for the
dense matrix multiplication (problem D). The lowest achievable speed-up has been
assigned to problem C due to its low computational cost.

Next we comment on some of the tasks generation recommendations in Burton and
Hiron (2008) and indicate how they apply to the problems in the contest:

• The problem statements are short and easy to understand, so that the participants
can concentrate on the solution (the parallelization) of the problem. Some of the
statements are very short, as for example that of problem D: “Multiplication of four
dense square matrices.”

• The problems are modifications of classical problems, and the sequential solutions
provided follow typical sequential algorithmic schemes, but to obtain a highly ef-
ficient parallel solution it may be necessary to modify the sequential program and
to design the parallel version bearing in mind the target computational system.

• For each problem there are different possibilities of parallelization, of varying dif-
ficulty and efficiency. And for some problems satisfactory solutions can be easily
programmed or taken from internet (this is specially true for problem D). So, it
should be easy to gain some marks in some problems, and more difficult to obtain
high speed-up.

• There are no official solutions apart from the sequential ones, which follow well
known schemes.

• The problems on which the proposed problems are based are well known, and also
the schemes solving them, but the best solution is not clear, and modifications of
the basic schemes and adaptation to the computational system are needed.

4. The Competition

The contest was celebrated in the Jornadas de Paralelismo in September 2011 in La
Laguna, Tenerife. The Jornadas de Paralelismo is an annual event which attracts most of
the people working in parallel computing in Spain, so this is an appropriate framework



An Experience on the Organization of the First Spanish Parallel Programming Contest 141

Fig. 1. Participants in the First Spanish Parallel Programming Contest.

for a parallel programming contest. The contest is conceived for undergraduate students
in their last years or for master or doctoral students, and some of them participate in the
Jornadas de Paralelismo by presenting their initial research results.

To facilitate participation, the teams can participate in situ or online, with two classi-
fications: one for teams participating in the Jornadas de Paralelismo and the other for all
the participants (in situ and online participants). Eight groups from six universities par-
ticipated (Fig. 1, four in situ and four online). The number of teams is not large, but we
consider it satisfactory for the first edition, moreover considering La Laguna is far from
most of the Spanish Universities. Anyway, our main goal with the contest is to spread
parallelism, and with this first edition we hope to have prepared the base for a higher
participation in successive editions.

Before the contest there was a warm-up session in July, to check the modifications
made to Mooshak and the correct response of the computational system, and to allow the
participants to get familiar with the mechanics of the contest, the tool Mooshak and the
cluster. That session lasted four days (to facilitate participation and experimentation), and
it consisted of two very simple problems: mergesort and matrix multiplication. For the
matrix multiplication, in addition to the sequential solution, OpenMP, MPI and hybrid
MPI+OpenMP programs were provided, so that the teams could gain experience of the
behavior of the system with different types of parallelism.

The contest runs on Mooshak, which validates the submissions and calculates the
speed-ups and the classification in real time. Furthermore, it allows guests to be invited
into the contest, and that way the evolution of the contest can be followed by non partic-
ipants. The last moments of the contest were followed by about 25 guests, which gives
an idea of the interest the contest aroused. Mooshak provides a classification in the form
shown in Fig. 2, which shows the final classification. For each team and problem the mark
obtained is shown, and between brackets the lowest execution time from all the submis-
sions (0 if no correct solution is obtained), the maximum achieved speed-up and the
number of submissions. The last two columns show the number of problems for which
the team has sent a correct solution and the total points. Problems C and E were not



142 F. Almeida et al.

Fig. 2. Final classification of the First Spanish Parallel Programming Contest.

solved correctly by any team in a time lower than the sequential time, which is in con-
cordance with the higher difficulty we considered for these two tasks. Furthermore, the
highest speed-up has been obtained for problem D, followed by problem A and finally
problem B. This coincides with the easiness estimated in Table 1. In problems A and D
the maximum speed-ups were obtained by sequential optimization (optimization of the
access to memory by transposition of the second matrix in the multiplications) combined
with shared-memory or message-passing parallelization. No team combined both types
of parallelism, which means the speed-ups obtained are far from the maximum estimated.

The evolution of the classification is shown in Fig. 3. The minutes at which modifica-
tions in the classification happen are represented. There are some points where the marks
of some teams decrease (minutes 198 and 234). This happens when a speed-up higher

Fig. 3. Evolution of the classification throughout the First Spanish Parallel Programming Contest.



An Experience on the Organization of the First Spanish Parallel Programming Contest 143

than 16 is obtained, because in this case the marks of all the teams for that problem are
recalculated. All six universities were at some moment in the first position, and the last
hour has the maximum number of submissions, with four changes in the first position.

5. Conclusion and Perspectives

The paper shows the experience of the first Spanish Parallel Programming Contest, held
in September 2011. This event aims to disseminate parallelism among Scientific Com-
puting students. The contest is similar to other programming competitions, and there are
other parallel programming contests, but there are some differences: this one has two clas-
sifications, in situ and online; the tool Mooshak is used for an automated and real time
evaluation of the submissions and for the classification, for which a new classification
scheme has been implemented along with the system to connect Mooshak to the cluster
where the contest is carried out; and a record table is maintained in the web page of the
contest, with explanations and codes of the fastest solutions obtained in the contests or
submitted outside them, so that the page can be used for preparing the participation in
successive editions and for educational purposes, all of which are being used in various
parallel programming courses in Spanish universities.

Additionally, the task generation process has been described. Recommendations of
other authors for task generation have been considered, and the adaptation to a parallel
programming contest are commented on.

We can consider the first edition of the contest has been successful, with a small
number of participants, which is normal for the first edition, due to the specialization of
parallelism (which is becoming more and more popular, but at present is not studied by
all Computer Science students), and to the celebration of the contest at the University of
La Laguna, which is far away from most of the Spanish universities.

The perspectives of the contest are:

• We are now working on the preparation of the next edition, in September 2012. We
plan to organize an open session in the Jornadas de Paralelismo to follow the last
minutes of the competition, and to discuss the solutions provided by the contestants
and other possible solutions.

• The web page and the contest will also be in English, so that non Spanish students
can participate online, and the use of the web page as an educational tool will be
more visible.

• Some additional modifications can be included in Mooshak to better adapt it to the
contest. For example, it could be interesting to include the generation of classifica-
tions with the format of Fig. 3, and not only in table form (Fig. 2).

• The inclusion of a CUDA competition is being considered. This supposes addi-
tional organizational work, because the programming paradigm changes, and prob-
lems which can be solved with a SIMD approach should be generated, and the
expected speed-up estimated. Furthermore, some small modifications should be
included in Mooshak to addapt it to the job queue system in a multicore+GPU
environment.



144 F. Almeida et al.

Acknowledgements. This work has been funded in part by the Spanish MCYT under
Grant TIN2008-06570-C04-02 and by the Fundación Séneca, Consejería de Educación
de la Región de Murcia, 08763/PI/08. The authors gratefully acknowledge the computer
resources and assistance provided by the Supercomputing Center of Fundación Parque
Científico of Murcia.

References

Almeida, F., Giménez, D., Mantas, J.M., Vidal, A.M. (2008). Introducción a la programación paralela. Paran-
info Cengage Learning.

Burton, B.A., Hiron, M. (2008). Creating informatics olympiad tasks: exploring the black art. Olympiads in
Informatics, 2, 16–36.

Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J. (2001). Parallel Programming in
OpenMP. Morgan Kauffman.

Dagienė, V. (2010). Sustaining informatics education by contests. In: Hromkovic, J., Krlovic, R., Vahrenhold,
J. (Eds.) Teaching Fundamentals Concepts of Informatics. Springer, 1–12.

Fernández Alemán, J.L. (2011). Automated assessment in a programming tools course. IEEE Trans. Education,
54(4), 576–581.

García-Mateos, G., Fernández Alemán, J.L. (2009). A course on algorithms and data structures using on-line
judging. In: ITiCSE, 45–49.

Grama, A., Gupta, A., Karypis, G., Kumar, V. (2003). Introduction to Parallel Computing. Addison-Wesley.
Hakulinen, L. (2011). Survey on informatics competitions: developing tasks. Olympiads in Informatics, 5, 12–

25.
IEEE Technical Committee on Parallel Processing.

http://www.cs.gsu.edu/˜tcpp/curriculum/index.php.
International Olympiad in Informatics.

http://www.ioinformatics.org/index.shtml.
Jornadas de Paralelismo (2011).

http://jp2011.pcg.ull.es/.
Kolstad, R. (2009). Infrastructure for contest task development. Olympiads in Informatics, 3, 38–59.
Lawrence, R. (2004). Teaching data structures using competitive games. IEEE Transactions on Education,

47(11), 753–759.
Leal, J.P., Silva, F.M.A. (2003). Mooshak: a web-based multi-site programming contest system. Softw. Pract.

Exper., 33(6), 567–581.
Marathon of Parallel Programming.

http://regulus.pcs.usp.br/marathon/current/index.html.
Meder, D.J., Pankratius, V., Tichy, W.F. (2008).

http://www.multicore-systems.org/separs/downloads/
GI-WG-SurveyParallelismCurricula.pdf.

Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP. McGraw Hill.
Snir, M., Gropp, W. (1998). MPI. The Complete Reference. The MIT Press.
Spanish Parallel Programming Contest

http://cpp.fpcmur.es.
Student Cluster Competition.

http://sc10.supercomputing.org/?pg=studentcluster.html.
Supercomputing Centre of Murcia.

http://www.cesmu.es/inicio/.
UVa Online Judge and Contest System Developed by the University of Valladolid (Spain).

http://online-judge.uva.es/problemset.
Vasiga, T., Cormack, G., Kemkes, G. (2008). What do olympiad tasks measure?. Olympiads in Informatics, 2,

181–191.



An Experience on the Organization of the First Spanish Parallel Programming Contest 145

F. Almeida received his degree and the MSc in mathematics from the
University of La Laguna in 1989 and 1992 respectively. He obtained
his PhD in Computer Science in 1996. Currently he is professor in the
Department of Statistics and Computer Science in the University of La
Laguna. His research interests are primarily in the areas of parallel com-
puting, parallel algorithms for optimization problems, parallel systems

performance analysis and prediction, skeleton tools for parallel programming and web
services for high performance computing and grid technology.

V. Blanco Pérez received his degree in physics and his MSc in physics
from the University of Santiago de Compostela in 1992 and 1993 re-
spectively. He obtained his PhD in physics in 2002. In October 2000
he became an assistant professor in the Department of Statistics and
Computer Science in the University of La Laguna. Since 2009 he is
associated professor in the same department. His research interests

include performance analysis of parallel codes, parallel algorithms for dense and sparse
algebra, Grid technology, and GPGPU tecnology.

J. Cuenca is an associate professor in the Computer Engineering De-
partment at the University of Murcia, Spain. He received his BSc (en-
gineering in computer science) from the University of Murcia in 1994,
and his PhD in computer science from the University of Murcia in 2004.
He was director of the Computer Engineering Department from 2008
until 2011. Since 1998 he has taught several subjects: “Fundamentals

of Computer’s’, “Fundamentals of Operating Systems” in the computer science degree,
and “Parallel Programming” in the computer science master. His research interests in-
clude issues related to parallel computing, linear algebra software and software auto-
tuning techniques.

R. Fernández-Pascual received his MSc and PhD degrees in computer
science from the University of Murcia, Spain, in 2004 and 2009, re-
spectively. In 2004, he joined the Computer Engineering Department as
a PhD student with a fellowship from the regional government. Since
2006, he has been an assistant professor at the University of Murcia.
His research interests include general computer architecture, fault tol-
erance, chip multiprocessors and performance simulation.

G. Garcia-Mateos is a professor working at the Computer Sci-
ence Faculty of the University of Murcia, Spain. He received his
PhD degree in 2007, and is a member of the Computer Vision
Research Group. Since 1998 he has been teaching algorithms and
data structures, and has written two textbooks and several scientific
papers on computer science education and programming contests.

In 2002 he participated in the creation of the Programming Olympiad in Murcia for com-
puter science students, and in 2008 the Informatics Olympiad in Murcia for high school
students. Currently, he is the director of both olympiads. These contests are the Murcia



146 F. Almeida et al.

local stages of the ACM International Collegiate Programming Contest and the Interna-
tional Olympiad in Informatics, respectively.

D. Giménez is an associate professor in the Computer Science De-
partment at the University of Murcia, Spain. He has been a fac-
ulty member of the university since 1988, where he teaches al-
gorithms and parallel computing. He received his degree in math-
ematics from the University of Murcia in 1982, and his PhD in
computer science from the Polytechnic University of Valencia in

1995. In 2002 he participated in the creation of the Programming Olympiad in Murcia
for computer science students. His research interests include scientific applications of
parallel computing, matrix computation, scheduling and software auto-tuning techniques.

J. Guillén is a telecommunications engineer from the Polytechnic
University of Valencia and executive MBA in the Escuela de Orga-
nización Industrial. Since 2009 he has been project manager for the
Supercomputing Center of Fundación Parque Científico de Murcia,
managing R&D collaboration projects involving public research cen-
tres, universities and companies in different sectors such as indus-

try, naval, biotechnology and engineering. Previously, for more than 4 years, was project
manager for Ericsson, coordinating international projects for telecom operators from dif-
ferent countries such as Ireland, Hungary, Egypt and Nigeria, mainly related to network
rollouts and systems integrations in all project phases. First job position since 2003 as
analyst and team leader for the international IT and business consulting company Everis
for the customer Telefónica Spain.

J.A. Palomino Benito (1983) holds a computer engineering degree
from the University of Alicante. Currently he is doing his PhD the-
sis research since he presented his dissertation about parallel linear
systems solvers in the Department of Science of the Computation
and Artificial Intelligence at the University of Alicante. Since 2008,
he has been working as application area manager in the Supercom-

puting Center of the Murcia Science Park in Spain. Hence his interests focus on HPC and
algorithms in general, and he is a member of the Spanish Parallel Programming Contest
organizing committee.

María E. Requena studied telecommunications engineering at the
Polytechnic University of Valencia and did her PhD at the Poly-
technic University of Cartagena (UPCT). She did her final project
in the Repsol-YPF refinery in Cartagena. She began her career in
Madrid in the SDB ALTRAN consulting involved in reengineer-
ing projects like power switching Moviline at Motorola and the

design and implementation Imagenio platform at Telefonica R&D. She returned to Carta-
gena where she completed doctoral courses and worked in several R&D projects. While
in the UPCT she published several books, international and national papers. Currently
she is a head of the Supercomputing Center of the Science Park Foundation of Murcia a
position she has held since March 2008.



An Experience on the Organization of the First Spanish Parallel Programming Contest 147

J. Ranilla is a PhD in computer science and associate professor at the
Faculty of Informatics, University of Oviedo (Spain). His research in-
terests include information retrieval, knowledge management, paral-
lel computing, and machine learning. Contact him at the Computer
Science Department at the University of Oviedo, 33271, Campus de
Viesques, Gijón, Spain.


