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Abstract. Almost all tasks at informatics olympaids are of discrete content. Tasks of continuous
content are rare; moreover, some of them are not algorithmic in nature or it is not possible to score
their solutions strictly because of using approximate calculations. We propose to involve such tasks
with strict formulations and discrete (in integer numbers) solutions by means of ideas of interval
analysis and present some ways to create and to solve them. We hope that some classes of such
tasks would enlarge scope of tasks for use in informatics olympiads at various levels.
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1. Definitions

First of all, note that all tasks of types proposed below can be written without special
terminology, for example:

Task 1.1. Given an integer number N, 10 < N < 10'°%°, Find an integer K that the
solution of the equation 23 + x = N fulfills the assertion K < z < K + 1.

The knowledge of the formula for solution of cubic equation is a disadvantage in
solving of this task because it is impractical while the common bisectional search method
yields result easily.

The following considerations are developing of idea of this task:

Denote the space of real numbers as R. We will consider continuous objects, such as
real numbers (basic objects), finite ordered sets of real numbers (vectors in R™), polygons,
polynomials, and continuous functions defined in any way.

To make such definitions strict, they will be presented (in the task conditions) by
means of integer numbers.

It is known that not all x € R can be represented by any algorithm (by constructive
methods). Hence, the notion of computable number was introduced (see, for instance,
Shanin, 1968):

DEFINITION 1.1. Any « € R is said to be computable if there exists an algorithm which
reworks any natural number n in such integer m that [z — 2| < L.

Certainly, such definitions will not be used in tasks but properties of computable num-
bers ought to be kept in mind to produce correct statements of problems.
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In our opinion, computability of real numbers arising in tasks is obvious for the com-
mon contestant.
By strict solution we mean the following

DEFINITION 1.2 (Pankov et al., 1979). Computations are said to be validating if they are
conducted in such a way that their results being interpreted as sets of continuous objects
contain the true objects (solutions of proposed tasks).

The term “reliable computations” is also used.

One of ways to implement validating computations is interval analysis (Moore, 1967).
Let X = [x_,z4] C R.If z € X, then X is said to be an interval presentation of z; if
z_ and x4 are rational numbers and are presentable in a computer in any standard way
then X is said to be a machine interval presentation of x.

For an interval X = [z_, 2z ], the difference Wid(X) = z; — z_ is said to be
the width of X; let the width of an interval vector be the maximum of widths of its
components.

The narrower X, the better the presentation.

If the width of an interval (vector) is zero then it is said to be degenerate, i.e., it is
equivalent to a single number (vector).

For intervals, the notions Length(X) and Wid(X) coincide. For interval vectors the
notions Measure (Area for 2D, Volume for 3D .. .) differ from Wid.

We will use the functions of an interval considered as an entire object: X_ :=
x_, X4 :=xy;if X isinteger and Wid(X) > 1 then midX := int((X_ + X)/2) (for
instance, int means rounding down to an integer);

splitting: Lhalf (X) := [X_, mid(X)] and Rhalf (X) := [mid(X), X+ 1.

The last two operations are also applicable to interval vectors (for instance, splitting by
the widest component; if there are some such ones then choose one on the least position).

Also, we will use the function of outer interval presentation of finite or other bounded
sets in R™: Quter(W) is the “least” (the narrowest in all components) box (interval
for n = 1, interval vector for n > 1) containing the set . The simplest example:
Outer({a,b}) = [min{a, b}, max{a, b}1.

(We will use operations min and max both for finite and bounded closed infinite sets
of R).

Recall the obvious formulas of interval analysis:

[t o)+ [y—,ys] =[e- +y_,zy +yshle—, xy] — [y—, y4)
=z —ypry —y- ],
[w— 4] [y—,y+] = Outer({a—y— 21 ys, vy, 21y-})

(by means of branch on condition the last formula can be reduced to two products); if
(nis odd or 0 & [x_,z4 1) then [z_,z4]" = Outer({z”, 2} }) else [v_,x4]" =
Outer({z™,0,27 }).

Interval analysis uses the triple logic. Let x € X C R and we try to prove that z > 0.
If x4 < 0 (in other words, X < 0) then x < 0 (result: No); if z_ > 0 (in other words,
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X > 0) then z > 0 (result: Yes); elsewhere (0 € X; result: Uncertainty; try to calculate
a narrower interval presentation for x).

The main idea of interval analysis is deriving results on infinite sets by means of finite
operations on boundaries of intervals.

Remark 1.1. Strict results of approximate calculations could be also obtained by means
of strict estimation of rounding error; but implementation of such estimation during actual
vast computations is impossible.

Remark 1.2. Results of validating computations (of interval analysis) can be interpreted
in two main ways: as a result for a single number or as result for a set of numbers. Give
a simplest

EXAMPLE 1.1. Suppose that the statement “m € [3.1,3.2]” is proven already. Due to
rules of interval analysis, the calculation [3.1, 3.2]2 yields the result [9.6, 10.3] (directed
rounding off to one decimal place). Thus, two statements are proven:

“r? €19.6,10.3]"; “For all = € [3.1,3.2], 22 € [9.6,10.3]”.

Recall definitions of interval analysis for functions.

If the inclusion z_ < x < z implies the inequality p(z) > P_(x_,x4)(p(z) <
Py (x_, ) respectively) then a function P_(x_, x4 ) of two variables is said to be a mi-
norant (P (z_,z) is said to be a majorant respectively) of the function p(z) of one
variable.

The interval function P(x_,zy) = [P_(z_,24), Py(z_,z4)] is said to be an
interval representation of p(z). If two interval representations fulfill the assertion
Py(x_,z4) C Po(x_,z4) then Py(x_, x4 ) is said to be not worse than Py (z_, x).

Remark 1.3. P x (z_,z) = Outer({p(z)|x_ < z < x4}) is the best interval repre-
sentation for p(z). But its exact calculation is practically impossible for functions arising
in tasks. And the aim of interval analysis is constructing “sufficiently good” interval rep-
resentations.

Interval analysis is used as follows: repetition of uniform computations by means of
computer for any finite covering of a set yields a (strict) result for all points of this set.
To diminish the number of elements of the covering, bisection method can be used.

We call intervals (interval vectors) with integer boundaries integer intervals (integer
interval vectors correspondingly).

2. Correct Statement of Problems and Scoring

There was proven the following (see, for instance, Shanin, 1968)

Theorem 2.1. The problem of distinguishing the cases “x < 07, “z = 0” and “z > 0” for
a computable number z is irresolvable algorithmically in general case (cf. “triple logic”
above).

The narrowest non-degenerate integer interval has the width 1.
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If given functions are computed exactly for integer numbers then the following state-
ment of problem may be correct:

Statement 2.1. Find a semiopen integer interval of width 1 containing the solution, i.e., to
find such integer K that K < x < K + 1.

But the general task to obtain such integer interval is incorrect: if the unknown number
x is integer then methods of interval analysis in virtue of Theorem 2.1 can yield only a
result of type [z —e, x+¢] where € is a small positive number, and the narrowest attainable
integer interval presentation is [z — 1,z + 1].

So, the following two statements of problem are correct:

Statement 2.2. Find an integer interval (vector) containing the solution (real number or
vector of real numbers respectively) of width not greater than 2;

Statement 2.3. Find an integer interval (vector) of width not greater than a given natural
number (greater than 2).

There are two ways to score an answer given by the contestant (output-only task) or
by the contestant’s program:

— the jury knows the narrowest integer interval and an answer is to contain it;
— the scoring program checks an answer by a posteriori computations.

Remark 2.1. Sometimes, to substantiate an answer, using of some mathematical results
(theorems) and/or some additional calculations (checking-up of some conditions) is nec-
essary. That is why proposals to look through listings of contestants’ programs arise time-
by-time. But the resolutions of majorities of juries are same: such looking through of all
listings is practically impossible. So, the corresponding theorems of analysis will be men-
tioned below but using of them, certainly, is not to be checked in listings.

Moreover, for types of tasks proposed below the contestants can improvise, invent
their own algorithms including heuristic ones, use a posteriori methods, use real num-
bers (with rounding-off of final results) etc. We consider this as a positive effect making
competitions more interesting.

Certainly, the jury is to prepare tests with strict methods:

— interval computations mentioned in this paper;

— fitting of functions.

Simplest examples of fitting: choose a polynomial p; (z) > 0(z € R). If po(z) = a+
(x — b)?p1(x) (after removing brackets) then min{p,(z)} = a; if p3(x) = (x — b)p1 ()
(after removing brackets) then the solution of the equation ps(x) = 0 is b.

3. Main Types of Tasks and Mathematical Methods to Solve Them

Below appropriate one of Statements 2.1, 2.2 or 2.3 is meant in contents of all tasks
(under the general denotation Statement 2 with the upper boundary w for width).

General task 3.1. Given a function in a domain G C R"

f:G— R;
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find an integer interval containing its least (greatest) value (and an integer interval con-
taining the value of argument yielding all solutions correspondingly).

General task 3.2. Given an equation in a domain of type
flz)=0 (z€@),

find an integer interval (all integer intervals) containing its least (greatest) solution (all
solutions correspondingly).

General task 3.3. Given a geometrical object, find an integer interval containing any
measure (length, area, volume) of it.

Remark 3.1. Experience of using such tasks at olympiads gave the following paradoxi-
cal fact. Contestants who knew “formulas” for the values to be calculated demonstrated
worse results than those who did not study or have forgotten such “formulas”.

ELINNT3

The explanation of this fact is following. So-called “formulas”, “expressions in ex-
plicit form” are not irrevocable results (although they seem to be such ones) but they are
connections between some mathematical notions only.

Therefore, we propose to teach mathematics to computer scientists with stressing the
following statements:

— every mathematical method is to be considered from the viewpoint of its construc-

tiveness;

— common (approximate) calculations do not yield guaranteed results;

— strict estimation of computational error in real tasks is impossible (what would be

also useful for their forthcoming professional activity).

Such a subject was implemented by us (Pankov et al., 1996, 2002). Exposition of each
notion begins with conditions ensuring its computability; further, formulas and ways of
better computations are given. For instance, “differentiation” is not a constructive opera-
tion (and many computer scientists lost and lose a lot of time because of this fact) while
“integration” is a “good” operation. Finding values of maximum and minimum are con-
structive operations under wide assumptions but finding points (arguments) where these
values are attained is not constructive. Also, mistakes in programming being very difficult
to be found arise because of ignoring Theorem 2.1 above.

Moreover, we (Pankov, 1987) declared that “an expression in explicit form” is not
a mathematical notion but a historical one. Namely, if any type of equations arose in
mathematical investigations frequently then their solutions are given special denotations;
if these denotations are apt then their properties are investigated thoroughly, tables of
and (last fifty years) computer procedures to calculate their values approximately are
developed.

To warrant this conclusion, list

constants : 7 = @ (golden ratio), , e, Euler constant C, . ..

functions: roots, trigonometric functions, inverse trigonometric functions, exp, log
and being infinitely replenished list of so-called special functions: integrals which cannot
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be expressed by means of preceding functions: integral sine, integral logarithm, . . ., Euler
B- and I'- functions, Bessel functions, hypergeometric function, Riemann (- function, . ..

Also, recall a standard expression in text-books and papers: Given a polynomial. Let
r1,%2,...beits roots . .. But the task of obtaining roots by given coefficients is separate
and complicated.

Further, mathematicians try to reduce solving of other types of equations to those. But
existence of a denotation is not a solution yet. So, we proposed not “to express a contin-
uous object in explicit form” but to try to prove computablility of continuous objects.

4. Validating Assertions for Polynomials

We will consider tasks for polynomials with integer coefficients only. Square roots can
also be involved. Combinations of polynomials, operations max, min, abs, square roots
can yield indefinitely many tasks. For example, the function

f(z) = |erx? — min{coz + c3, |caz + 53|} + cg|z]

with given integer constants is sufficiently complicated to avoid all “analytical” methods.
All given numbers are assumed to be integer.
We will use mathematical denotations close to ones of algorithmic languages.
Given a natural number N and numbers A[0], A[1], ..., A[N]; let A[N] > 0 below.
Define a polynomial

The simplest interval representation of (4.1) is obvious:
P(z_,z4) :=X{An] [z_,z4]"|n =0..N}. (4.2)

There is the law of subdistributivity for intervals: X - (Y +2) C X-Y + X -Z. Hence,
a better interval representation (also, either minorant or majorant) can be constructed by
means of presenting (4.1) by Horner method

pn(z) := A[N]x; forn = N — 1 downto 0 {p, (z) := x(pps1(z) + A[n])};
p(z) = po(). (4.3)

Consider also a function ¢(x) = % where K is a given natural number and it is

given or proven that p(x) # 0; suppose that p(x) > 0 within a domain.
Then an interval representation of g(x) is given by the formula

Q(z_,xzy) := [floor(K/Py(x_,x)), ceiling(K/P_(x_,x))]. 44)

If it is too rough then choose a natural number K; and define

Q* (x_,xy) = [floor(K1K/Py(x_,xy)), 4.5)
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ceiling (K1 K/P_(x_, x4 ))];
Qlr_,xy) = %’1’”); the factor K% is being kept mentally for forthcoming com-
putations.

5. Examples of Tasks

Tasks will be given in two versions: on bounded domain and on unbounded one. In the last
case the domain by means of some mathematical assertions must be reduced to a bounded
one.

Also, we will consider only one-dimensional case for given functions and two-
dimensional case for given figures. Generalization to multi-dimensional cases is reason-
able only for simple data because it itself is very complicated.

Task 5.1. Given N > 3, a polynomial p(z) of degree N and two numbers a < b, find
an integer interval containing ppi, := min{p(z)ja < = < b}.

EXAMPLE: min{62? — 30z + 40| — 1 < x < 8} € [2,3] (N = 2 here).

Remark 5.1. Such example is necessary; otherwise many contestants will take integer
values of z only: min{6x? — 30x + 40|z = —1..8} = 4.

Solutions for (4.1).

Ist step. Choose and build any minorant P_(x_, 2 ) for p(x).

2nd step. Choose a validating algorithm of global search min{p(z); P_(x_, x4 )|x €
[a,b]}.

The simplest one is of exhaustive search:

Algorithm 5.1. Calculate P, = [min{P- (k,k + 1)|k = a..b — 1}, min{p(k)|k =
a..b}].

If it does not meet Statement 2 then try to build a better minorant and repeat calcula-
tions.

More effective algorithms use bisectional search.

Describe one of them demanding the least volume of memory: successful proving of
inequalities (lower bounds for ppip ).

Algorithm 5.2.
Denote A:= [a, bl;
Define array X[] of intervals;

p-— = P_(A); p—y := p(midA);
X[1] := Lhalf (A); X[2] := Rhalf (A);
K :=2;

repeat

{m = mid(fp—, ps 1

repeat

{ifP-(X[K]) = pm
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then K:= K —1

else

{p—+ = min{p_,, p(mid(X[K))}; pm = textitmid|[pm,, p—+];
X[K + 1] := Lhalf (X[K]); X[K] := Rhalf (X[K]);

K:=K+1}
}

until K= 0;
p—— = pm};

until (Wid(X[K]) = 1 or Wid([p——,p—+]) < w // Statement 2/ /);

Result. pin € [p——,p—+].

If the algorithm stopped due to restriction on time then a better minorant is necessary;
if it done due the occurrence Wid(X[K]) = 1 then

— also a better minorant is to be involved;

— if we cannot do it then we are to involve narrower (fractional) intervals.

The most standard way is following. Choose a natural K} and substitute x = I$<_11 1
is integer, into (4.1) : p(z) = K; VS{A[n]KY "2} n = 0.N};

the factor K| N is being kept mentally for forthcoming computations.

Such cross-partition is to be applied to intervals distinguished by Algorithm 5.2.

Remark 5.2 (cf. Remark 3.1). Those who know “formulas” would solve the task as fol-
lows. “Define p'(x) = X{A[n]nz""!|n = 1..N}, try to solve the equation p'(x) = 0.
Let x1, 22, ...,z (M < N — 1) be its roots.

Calculate pyi, := min{min{p(z,,)|(m = 1.M) A (a < 2, < b},p(a),p(db)}.”
But this way for N > 3(N — 1 > 2) is much more complicated and contains practi-
cally irresolvable components.

Task 5.2. If N is even and greater than 2, find an integer interval containing
Pmin = min{p(z)|r € R}.
Solution for (4.1).

Ist step. Find a priori boundaries for arg min p(x). A rough estimation is derived from
the assertion: if p(z) > p(0) then p(z) > Pmin. Let |x| > 1:

p(z) — p(0) = A[N]z" — {|A[n]| - |z|"|n = 1..N — 1}
> |z A[N]|z| — 2{|Aln][|n = 1.N = 1}).

Thus, we obtain the following domain for search:

|z| < zg :=max{1, ceiling (X{|A[n]||n = 1..N —1}/A[N])}; and the task is reduced
to Task 5.1.

Consider Task 3.2. There exists the algorithm finding the number of all (real) roots of
a polynomial with integer coefficients but it is too complicated. Thus, additional condi-
tions are to be put. The simplest (and correct) version is
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Task 5.3. If A[0] < 0;A[n] > O(n = 1..N), find an integer interval containing the
(unique) solution of the equation p(x) = 0,2 > 0.

To avoid exhaustive search, | A[0]] is to be very large, for example, A[0] < —10%° for
N =4.
Thus, a kind of long arithmetic is to be constructed.

Solution.

1st step.

To = 1;

repeat { x o := 2z } until p(zg) > 0.

2nd step. Use bisectional search (with rounding-off to integer, cf. the operation mid)
on [0,z ] (or on [x0/2, g ]).

Task 5.4. Given N > 2, (large) natural K, a polynomial p(z)(A[0] > 0, A[n] > 0|n =
1..N) and two positive numbers a < b, find an integer interval containing the area s

between the z-axis, the graph of the function ¢(z) = % and lines x = a and = = b.

Remark 5.3. We evade the term “integral”, cf. Remark 3.1.

Solution. Construct an interval representation for the function ¢(z), see (4.4) and (4.5).
The exhaustive summation for (4.5):

seX{Qx(x,x+1)|z=0a.b—1}/K;.

If the number (b — a) is too large then bisectional partition can be used.

Algorithm 5.3.
Define arrays X|[], V|| of intervals.
X[1] = [a,b];
V1] = QUX[UDWid(X 1]
S:=V[1;K:=1;
repeat
{
find one of intervals V[1], ..., VK] of the greatest width(V[L)]);
X[L] := Lhalf (X[L)); X[K + 1] := Rhalf (X[L));
VIL] := Q(X[L]) Wid(X[L]); VIK + 1] := Q(X[K + 1]) Wid(X [K + 1]);
K:=K+1,;
S :=3{V[K]lx =1..K}
}
until Wid(S) < w // Statement 2/ /,

Result. s € S.

Remark 5.4. The value of S cannot be calculated by means of using preceding value
of S:

S = Sprec. — Vprec.[L] + V[L] + V[K + 1] because of the following law for
intervals: Wid(A + B) = Wid(A)+ Wid(B).
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Hence, if the width of an interval B is positive then Wid((A + B) — B) > Wid(A).

Remark 5.5. For given (very smooth) functions g(x), the participant may venture to

use

any approximate formula for definite integrals (an estimation of a remainder term is

practically impossible), but for given non-smooth functions it would be in vain.

Task 5.5. Given a polynomial p(x,y) (such that p(z,y) > 0 for |x| >> 1 or |y| >> 1).

Fin

d an integer interval containing the area of the figure F' = {(z,y) € R?|p(z,y) < 0}.

Solution.

1st step. Build an interval representation [P_, Py ] for p.
2nd step. By means of a rough estimation find any interval vector [a_,a1] X [b_, by

] containing F’ (interval representation of F’).

3rd step. The exhaustive summation (Num means the number of elements of the set):

Area(F) € [Num{(z,y)|Pr(z,z+ 1,y,y + 1) <0,
r=a_.ay — L, y=>b_..by — 1},

(ar —a )by —b) — Num{(z,5)|P_ (2,2 + Ly, y+1) > 0,
r=a_..ay —1, y=>b_.by —1].

If the number (a4 — a_) (b4 — b_) is too large then binary partition can be used.

Algorithm 5.4.

Define array Z[ | of 2-dimensional interval vectors.
Z01) = a_,a4] X [b_,by;

A_:=0; Ay :=(ay —a_)(by —b_); K :=1,
repeat

{find one of Z[1],. .., Z|K]of the greatest width (Z[L]);
Py .= P(Z[L));

if 0 € Py then

{Z|L] := Lhalf (Z|L)); ZIK + 1] := Rhalf (Z[L));
K:=K+1}

else

{{ifPz4+ <OthenA _ := A_ + Area(Z[L)])

else

Ay = Ay — Area(Z[L)};

Z|L|:=Z[K|;K .= K -1}

}

until Wid([A—, A4]) < w // Statement 2 /1,

Result. Area(F) € [A_, Ay].

6. Tasks of Discrete Content Arising from Continuity

The following types of tasks are of “common” discrete content but we did not meet such
ones at informatics olympiads. They are solved by same methods.
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Task 6.1. Given a polynomial p(x) and two numbers a < b, find
Ppin = min{p(z)|z = a..b} (and find all {z € a..b|p(z) = Puin})-

Task 6.2. If N is even, find
Ppin = min{p(z)|xis integer} (and find all {integerz|p(z) = Ppin})-

Task 6.3. Given a polynomial p(x) and two numbers a < b, find

{z =a..b—1lp(z)p(z + 1) < 0}.

Task 6.4. Given a polynomial p(x), find all
{integerz|p(z)p(z + 1) < 0}.

Remark 6.1. This task is not equivalent to the task of separating all (real) roots of a poly-
nomial. For example, if p(z) = 9(z — 1)(z — 3) = 92% — 3z + 2 then p(z) > 0 for all
integer x.

Such tasks are more interesting for multi-dimensional cases where exhaustive search
is evidently too slow. But a simple generalization may be incorrect. For example, the
following task:

Given a polynomial p(z, y), find

{integer(z,y)|0 € Outer({p(z,y),p(z+1,y),p(xz,y+1),p(x+1,y+ 1)} is incor-
rect: it has infinitely many solutions for p(z,y) = = + y.

Task 6.5. Given a polynomial p(x, y) (such that p(x,y) > 0 for || >> 1 or |y| >> 1)
and natural M. Find Num{p(x,y) <O | x and y are integer} (mod M).

7. Conclusion

We hope that using tasks of proposed above types would attract attention of computer
science students and computer scientists to the problem of validation of common approx-
imate caculations and would expand the scope of tasks on olympiads in informatics of
various levels. Also, distinguishing constructive (i.e., realizable on computer) methods
among all mathematical ones would be useful in forthcoming professional activity of
contestants of olympiads.
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