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Abstract. Nim is a well-known two-person game, where players alternate faking items from one
of multiple piles. Finding a winning strategy for such games is a nice exercise in problem solv-
ing. Typically, the winning strategy for classical nim is explained in terms of nim sums, involving
binary notation of numbers. I explain how to understand and play a winning strategy without prior
knowledge of binary notation, which is useful when presenting this strategy in primary school.
Programming that strategy is also an interesting challenge. This can be done elegantly in a func-
tional language that supports patterns, such as the Wolfram Language. I conclude by giving you a
variant of nim to work out yourself.
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1. Introduction of Problems to Solve

I teach enrichment classes in a primary school. The focus is on problem solving. One
of the themes is puzzles and games that allow a mathematical analysis. Sometimes we
work on ‘exotic’ (less known) puzzles and games, such as ‘the princess on a graph’,
Perfect (2011), and others, Dore et al. (2010). But of course it is also important to ad-
dress the classics.

One of these all-time classics is the following two-person game, known as misere
nim', played as follows:

e Start with several piles of items (go stones, pennies, toothpicks, etc.).
e Players alternate turns.

e At each turn, a player takes one or more items from one pile.

e The player taking the last item loses.

Nim is an impartial game, in the sense that the set of available moves depends only on
that state of the piles, and not on whose turn it is. The problem is to find a winning strategy:
decide which positions are a win for the first player, and how to play in such positions.

" https://en.wikipedia.org/wiki/Nim
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This can be formulated as a programming problem, where you need design and im-
plement a function to select a move for a given game position. It can also be offered as
a reactive task, Verhoeft (2009).

However, the problem that I first want to address is how to present a winning strategy
that does not require prior knowledge of binary notation, so that it can be explained to
pupils in primary school.

2. Presenting a Simple Solution

Impartial games are mathematically well understood via the Sprague-Grundy Theo-
rem?, especially for normal play, where the player who cannot move loses. But in this
article we use the misére rule: the player who cannot move wins, making it a bit more
interesting.

When only piles of size 1 remain, it is easy to see how the game proceeds. When
the number of size-1 piles is even, the player to move wins, and loses when it is odd.
Therefore, when all piles except one have size 1, the player to move can win, viz. by
taking away from the larger pile such that an odd number of piles of size 1 remain, i.e.,
by taking away all or all-but-one items from the larger pile.

What remains to analyze are game positions with at least two piles whose size is
larger than 1. It turns out (some explanation will follow) that in this case we need to
break each pile into distinct groups whose size is a power of 2. Traditionally, this is ac-
complished by writing the pile size in binary notation.

However, I felt that too complicated to explain in primary school. And then it struck
me that there is an easy way to avoid binary notation. For each pile, we are going to form
groups as follows:

1. Break the pile down into groups of size 1.
2. Repeatedly combine two groups of equal size into one group.
3. This terminates when all group sizes are different.

Observe that it is an invariant of this process that the group sizes are powers
of 2: Initially, in Step 1, the group sizes are 1 =2°, and in Step 2 the group size
doubles: 2 x 2¢ =21 The number of groups is a suitable variant function, which
decreases in each iteration of Step 2, proving loop termination. Note that this is a
non-deterministic algorithm.

Once all piles have been broken down into such groups, proceed as follows:

. For each group size, determine how often such groups occur.

. Consider the largest group size G that occurs an odd number of times.

. If no such group exists, the position is lost; otherwise, proceed with Step 4.
Start by removing already 1 item from a pile P that has a size-G group.

. Regroup the remaining items of that group as explained above.

. For all group sizes S < G inpile P, do the following:

S R e

2 https://en.wikipedia.org/wiki/Sprague?Grundy_theorem
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# size-S groups

in P in total Remove from P
0 does not happen
1 even 0 size-S groups
1 odd 1 size-S group
2 even 2 size-S groups
2 odd 1 size-S group

7. After this move, all group sizes occur an even number of times. Hence, it leaves a
lost position.

Breaking down the group of size G —1=2F — 1 in Step 5, you obtain k groups of
all sizes 2' with 4 < k. Therefore, in Step 6 every group size S < G occurs at least
once.

By the way, this also explains why these groups sizes, being powers of 2, are use-
ful. But do note that there is no need to know about powers of 2 to carry out these
algorithms.

3. Programming the Simple Solution

In a functional programming language that supports patterns, the first algorithm, which
splits a pile into groups, can be elegantly expressed. Here it is using the Wolfram Lan-
guage, Wolfram (2016):

(* Create groups of 1, given the pile size n *)
singletons[n_Integer] := Table[{1}, n];

(* Combine two equal groups, using a pattern *)

combine[{x___, a_, y___, a_, z___}] := {x, Join[a, al, y, z};
(* Do nothing if no equal groups are present *)
combine[list_List] := list;

(* Repeatedly combine equal groups until no more change *)
combineStar[list_List] := FixedPoint[combine, list];

(* Split a pile of size n *)
split[n_Integer] := combineStar @ singletons @ n;

(* Split all piles in a position *)
split[position_List] := Map[split, position];

Some examples:

singletons[5]
{{1}, {13, {1}, {13, {1}

combine [{{1}, {1}, {1}, {1}, {1}}]
{1, 1}, {1}, {1}, {13}



234 T. Verhoeff

split[5]
{{1, 1, 1, 1}, {1}}

split[{3, 4, 5}]
{{{1, 13, {13}, {1, 1, 1, 133, {{1, 1, 1, 1}, {133}

The second algorithm, which determines whether a position is won and how to move
is equally elegant.

(* Reduce by removing a pair of equal groups *)
reducel[{x___, a_, y___, a_, z___}] = {x, y, z};
(* Do nothing if no equal groups are present *)
reduce[list_List] := list;

(* Repatedly reduce a list until no more change *)
reduceStar[list_List] := FixedPoint[reduce, list];

(* Determine the nimsum of a list *)
nimsum[list_List] := reduceStar @ Catenate @ list;

(* Determine whether a position is won *)
won[position_List] := nimsum @ split @ position != {};

(* Move to make, if position is won and
has at least two groups of size > 1 *)
move2[position_] :=
Block[{s, ns, mx, i},
s = split @ position;
ns = nimsum Q@ s;
(* Determine largest group in ns *)
mx = First @ MaximalBy[ns, Length];
(* Determine index of pile with group mx *)
i = First @ FirstPosition[s, mx];
(* Replace pile i with nimsum of that pile and ns *)
ReplacePart [position, i -> Total[nimsum @ {ms, s[[i]]}, 2]]
1;

An example

nimsum @ split @ {3, 4, 5}]
{{1, 1}}

won[{3,4,5}]
True

move2[{3,4,5}]
{1, 4, 5}

Programming movel that moves optimally when at most one group has a size greater
than 1 is left as an exercise.

I admit that it takes some time to get acquainted with functional programming. But
once you do, it does pay off.
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4. Conclusion

Finding a simple way for presenting a solution to a problem can in itself benefit from
problem solving. I have applied this to presenting an optimal strategy for classical nim,
a well-known taking game. Finally, I have shown how this strategy can be expressed in
the Wolfram Language using functional programming.

Let me finish by giving you a new challenge. In classical nim, a player must take one
or more items from exactly one pile. Here is a less well-known variant: at each turn, the
player must take one or more items from one or two piles. Find the winning positions for
the first player and how to determine a winning move.

While you are at it, the game Chomp?, is still unsolved, in the sense, that we do not
know how to determine a winning move for the first player (although it has been proven
that the first player can win).
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