
Olympiads in Informatics, 2016, Vol. 10, 61–72
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.04

61

The Place of the Dynamic Programming Concept
in the Progression of Contestants’ Thinking

Ágnes Erdősné Németh1,2, László ZSAKÓ3

1Batthyány High School, Nagykanizsa, Hungary
2Doctoral School, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
3Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
e-mail: erdosne@blg.hu, zsako@caesar.elte.hu

Abstract. The special problem-solving strategies have been receiving a lot of attention lately,
whether it is teaching computational thinking for all or computer science for competitors. A di-
dactically interesting question is how problem solving can be developed in children’s minds, what
steps and tasks lead through from understanding the idea to its professional usage. In this paper
we present and explain how and in what forms the given problem-solving strategies, especially
the dynamic programming concept, appear in children’s informatics studies: from CS unplugged
activities through Bebras tasks and national CS competitions to efficient coding at the IOI.

Keywords: dynamic programming concept, teaching informatics in primary and secondary
schools, preparing for contests.

1. Overview

There are a lot of problem-solving strategies which every contestant has to be familiar
with. In this paper, we want to focus on one of the most important ones, specifically dy-
namic programming, because “[Until] you understand dynamic programming, it seems
like magic” (Skiena, 2008).

The dynamic programming name came from Bellmann in the 1950’s (Dreyfus,
2002). He wanted to find a name for the multistage decision making process, in which
the general case is very hard to solve thus one must use the divide & conquer concept. It
leads back to special cases, when the solution is expressed more easily – not in terms of
the unknown function, but in terms of an action or decision.

If we want to speak about dynamic programming, we also have to examine other cor-
responding concepts, like recursion, memoization and divide & conquer.

The concept of recursion consists of a recursive function and a recursive implemen-
tation; it is a top-down approach. Usually the runtime of the algorithm is exponential
and this technique usually fails already in a small sample size. The memoization is a
top-down approach as well, it is more effective than recursion. The core idea is the

Á. Erdősné Németh, L. Zsakó62

same: recursive function and recursive implementation, but storing the calculated re-
sults, thus without calling the recursive step again when the actual state previously
appeared.

When we are experienced enough to implement a recursive approach correctly,
there is a special technique for dramatically reducing the runtimes of certain algo-
rithms from exponential to polynomial or from factorial to exponential, at the expense
of higher memory usage. This is done by solving sub-problems and storing the results
using a dynamic programming concept. The concept is about a recursive function, but
the implementation is to build the values from bottom up without calling the recursive
step repeatedly.

The simplest type of dynamic programming is when an array is filled – namely a
table – cell-by-cell in a predetermined order, implementing the recursive function from
bottom up. We will call it a basic DP.

Some people use the term dynamic programming only for those recursive problems,
which involve optimization, but the technique of completing a table to solve any other
type of problem is almost the same when it comes to implementing the solution. We will
call it classic DP.

The dynamic programming as problem-solving strategy is the implementation of the
following five steps (Horváth, 2004):

Analysing the (optimal) solution’s structure.1.	
Dividing it into subproblems and components:2.	

Dependence of components must be acyclic.a.	
Every subproblem (optimal) solution should be a (recursive) expression of b.	
components’ (optimal) solution.

Expressing each subproblem’s (optimal) solution as a (recursive) function of com-3.	
ponents’ (optimal) solution.

These three steps are the planning of recursive algorithm. DP comes from the next
two steps:

Calculating subproblems’ (optimal) solutions from bottom up (completing a ta-4.	
ble).
Calculating an (optimal) solution from the previously calculated and stored infor-5.	
mation.

If you are familiar with the basic DP techniques then you could continue with some
advanced techniques (Steinhardt, 2008).

The first advanced type is to keep track of all possible transition states. In this case
DP means filling out a table row-by-row, with the values depending on the row number
and values in the previous row.

Second advanced type is the dynamic greedy type.
The third advanced type is a steady state convergence, only for more experienced

students. In this case the recursive equation must be repeatedly applied, then values will
converge exponentially to the correct values.

All of the DP types have a place in different stages and in different ages of contes-
tants’ studies.

The Place of the Dynamic Programming Concept in the Progression ... 63

2. Place of Dynamic Programming in Algorithms Textbooks

There are a lot of textbooks about algorithms. They discuss all algorithms sequentially
and directly as they are written for university students. The structure of these books and
the place of dynamic programming in them is different.

In the textbook of Skiena (2008) the DP takes place after data structures, sorting and
selecting algorithms, graphs, combinatorics, backtrack and parallel programming. In the
chapter of dynamic programming, he compares algorithms using cache vs. computa-
tion at first. After this, he discusses the problem of string matching, longest increas-
ing subsequence and partition problem. The limitation of DP is presented via travelling
salesperson’s problem and there are some words about correctness and efficiency of DP.
Just after the DP concept comes the recursion and memoization, the concepts of the top-
down structures.

In the textbook of Kleinberg and Tardos (2006) there are basic algorithms, graphs and
greedy algorithms first. To process sets which can be divided into independent parts they
recommend divide & conquer concept. Just after this method, they speak about DP: the
recursion, the memoization and iteration over sub-problems are the parts of this chapter.

In the textbook of Dasgupta et al. (2006), dynamic programming is presented after arith-
metics, primes, cryptography, hashing, divide & conquer, graphs and greedy algorithms via
examples: travelling salesman’s problem, longest increasing subsequence and knapsack.

In the textbook of Sedgewick and Wayne (2011) there is no chapter dedicated to DP,
but the concept appears in some points of the book.

In the textbook of Gupta (2009) DP comes after introduction to algorithms, divide &
conquer method and greedy method.

Bebis (2007) has lot of chapters about sorting and searching methods, DP comes
after that.

There are not two textbooks, in which the place of DP is the same in the sequence
of algorithms. Sometimes it comes before graphs (Gupta, 2009), often it comes after
graphs. Occasionally it is before recursion (Kleinberg and Tardos, 2006), but in the most
common order its place is after recursion and memoization. Sometimes it is placed be-
fore the greedy algorithms, sometimes after. Textbooks do not usually stress the differ-
ences between dynamic programming and greedy approach, nor warn they about the
danger of accidentally using one instead of the other.

These textbooks are almost useless for primary and secondary school pupils because
of their advanced mathematics and informatics contents. Some parts of them may be
useful in upper secondary, just for contestants preparing for IOI.

3. New Way for Contestants Learning DP in Upper Secondary School

Last year there was a paper in IOIJournal about the critical analysis of textbooks and
new way of teaching DP (Forišek, 2015) for upper secondary school students preparing
for national olympiads and IOI. He started with the Fibonacci sequence – something is

Á. Erdősné Németh, L. Zsakó64

well-known by children from math studies – implementing it with a recursive function
and making this function more efficient with memoization. He compares iterative and
dynamic solution, then introduces DP bottom-up. He demonstrates that the exponential
solution longest common subsequence problem with a top-down approach turns poly-
nomial (o(n2)) with a bottom-up approach. It is a very good structure if students want to
prepare for olympiads all at once.

There is a book about competitive programming, which was written for contestants
preparing for ACM ICPC and IOI (Halim and Halim, 2014). It is not a real textbook, it
teaches the effective type detection of tasks and the correct, error-free coding, not the
concepts behind the algorithms. According to it contestants’ main goal ‘should be to
honing [their] ability to recognize a problem as DP, finding the recursive formula for
such a problem, coding the problem, and doing all of this quickly’.

After data structures and problem-solving strategies like searching – iterative & re-
cursive – divide & conquer concept and greedy algorithms comes dynamic program-
ming through an example: UVA 11450 wedding shopping. The chapter begins with the
repetition of recursion, backtrack, optimization and counting problems. It shows, that
this task’s solution: greedy method failed with wrong answer (WA), divide & conquer
method failed with WA (because of non-independent parts), complete search failed
with time limit exceeded (TLE). The dynamic programming method with top-down
(memoization) and with bottom-up approach is working. After this very detailed analy-
sis he gives six more example with analysis and many task recommendation to become
familiar with this method.

We think these methods work effectively for students in upper-secondary-school-age
(grade 11–13) preparing purposefully for national and international olympiads.

4. Teaching Dynamic Programming in Primary and Secondary School

If the students know structured programming concept (Floyd), they are familiar with
the top-down concept too, because of stepwise refinement; and they are familiar with
the concept of bottom-up, because concrete objects and functions. So the pupils knows
top-down and bottom-up paradigms as soon as they begin to implement a computer
program.

We think teaching dynamic programming ideally begins in upper primary school in
mathematics and informatics lessons. Implementation of DP on computers is possible
when children are familiar with the basic data structures (integer, boolean, array), basic
algorithms (sequence, iteration, selection, searching, procedures and functions) and the
concept of recursion.

4.1. CSUnlugged

There is not any activity yet that covers dynamic programming in the CSUnplugged re-
pository, but there is an intention to make a good one from the change-making problem.

The Place of the Dynamic Programming Concept in the Progression ... 65

4.2. BEBRAS

In the Bebras competitions there are tasks about DP every year. There are other tasks,
in which the recursion is the best solution. There are many in which the greedy gives
wrong answer and the dynamic programming concept must be used for the right solu-
tion.

On Bebras competitions the DP problems appear in a wide range of age groups and
difficulties also. It proves that the concept of DP comes much earlier than at the end of
secondary school and it is understandable for everybody, not only for contestants: it is
part of computational thinking skills.

The easiest task of DP is from 2013 for grade 5–8: the Pairs without Crossing (Kreu-
zungsfreie Pärchen). The brute force algorithm is working, but takes long time to try
every possible connection pairs, the dynamic concept make it easy. In 2011 the problem
Earn coins (Münzen verdienen) is a special case of the classic knapsack problem. This
one was one of the hard problems for the grade 5–6, middle for grade 7–8 and easy for
grade 9–10. In 2014 another classic DP problem appeared, the Expensive Bridges (Teure
Brücken) which one was hard problem for the grade 7–8, middle for grade 9–10 and easy
for grade 11–13.

There are more problems connected to DP for secondary-school-age students: the
Jumping Puddles (Pützenspringen), the game ROOK, in 2010 the task Pinecone (Tan-
nenzapfen), in 2014 the Best translation (Beste übersetzung) and in 2015 the Fireworks2
(das Feuerwerk2).

4.3. Tasks for Contestants of Upper-Primary-School-Age

In the grade 5–6 we could start with LOGO programming. It provides a strong foun-
dation in the basic programming structures, like sequence, iteration and selection.
Through the drawings, it also visualizes the concept of recursion well. They can imag-
ine and implement binary tree (Fig. 1), the Sierpinski-triangle (Fig. 2), the Koch-curve
(Fig. 3).

 Fig. 1. Binary tree. Fig. 2. Sierpinski-triangle.

Fig. 3. Koch-curve.

Á. Erdősné Németh, L. Zsakó66

In Hungary and many other countries, they meet table filling and the thought of
recursion in mathematics. They calculate total number of possible paths in a grid of
characters, from the top-left corner to the right-bottom corner to spell a given word
(Fig. 4). They calculate total number of possible paths, even if there are empty squares
in the grid (Fig. 5).

Pupils of grade 7–8 meet simple recursive sequences and functions, like the Fibo-
nacci sequence. In mathematics lessons, they meet combinatorial problems (permuta-
tion, variation and combination without repetition) without naming them. They come
across problems, like longest/shortest path in a directed/undirected graphs and coloring
problems on very small graphs, coin changing problem for small numbers, shaking
hands/sitting in a row/around a table, they calculate extreme values in Diophantine
problems. These problems are solved with table filling or with recursive expressions.
The formulas, like n! or �𝑛𝑘� are not formulated.

They can solve problems like these:

How many different, 10 cm high towers can build from 2 cm high blue, 2 cm high
yellow and 1 cm high red building blocks?

If they draw it systematically (seeing the blocks from bottom), they can guess the
recursive expression an = an – 1 + 2*an – 2 and they check it empirically. The solu-
tions are: 1, 3, 5, 11, 21, 43, 85, 171, 341, 683.

How many different covering exist on a 2*8 table with 1*2 size dominos?

 Fig. 4. Spelling a given word. Fig. 5. Spelling a given word with a pit.

Fig. 6. a1 = 1, a2 = 3, a3 = 5, a4 = 11 – Counting with drawing systematically.

Fig. 7. a1 = 1, a 2 = 2, a 3 = 3, a 4 = 5 – Counting with drawing systematically.

The Place of the Dynamic Programming Concept in the Progression ... 67

If they draw it systematically (seeing the blocks from the right), they can guess the
recursive expressionan=an–1+an–2 and they check it empirically. The solutions are:1,
2, 3, 5, 8, 13, 21, 34. The solution can be built for any given N with a table filling.

In primary schools the children meet problems with large numbers also, like 1000
points, 2016 numbered cards, 10 000 people. In such cases, the obvious idea is – instead
of the original task – to examine a simplest problem. What happens if the number of
points is 2, 3, 4, ..., the number of cards is 5, 6, 7,…, the number of people is 2, 3, 4,…?
If any regularity is noticed, they try to verify it empirically and apply it on the original
problem with large numbers. On primary-school-level, formulating and using the hy-
potheses is enough to solve such problems.

On the other hand, these problems can be implemented on the computer, as a recur-
sive expression or with table filling for larger numbers. The next classical problems are
the first appearance of dynamic programming approach for them:

Robot – A robot starts from the top left corner (1,1) of a MxN grid. At each step
the robot can make one of the two choices: move one cell to the right or move one
cell down. How many possible paths are there for the robot to reach the right-
bottom corner of the grid?

The robot problem can occur in many variations at grade 7 and 8:
The question is the same, but there are cells in a grid, on which the robot can’t ●●
step on (traps).
The question is the same, but there are cells in a grid, on which the robot have ●●
to step on (mandatory fields).
In every cell there are given number of pearls and the question is, what is the ●●
maximum number of pearls the robot can collect on its way.
Mix of traps and pearls.●●

Staircase – You are standing in front of a staircase, which has N stairs. Your goal
is to reach the top. If you are standing on the ith step, you can hop to (i+1)st or
(i+2)nd or (i+3)rd step. Given N, calculate the count of total possible paths for you
to reach Nth stair!

Coin Change – You want to make change for given N cents and you have infinite
supply of each of S1, S2, .. , Sm valued coins. How many ways can you make the
change?

Subset sum – Detect, if any of the subset from a given set of N non-negative in-
tegers sums up to a given value S!

Dice Throw Problem – Given N dice, each with m faces, numbered from 1 to m.
Find the number of ways to get sum X! (X is the summation of values shown by
the dices.)

Flooring – How many different coverings exist on a 1*N floor with 1*1 and 1*2
parquet pieces? How many different covering exist on 2*N floor with 1*2 parquet
pieces?

Á. Erdősné Németh, L. Zsakó68

Towers – How many different, N meters high towers can be built from 2 meters
high blue, 2 meters high yellow and 1 meter high red blocks?

The previous dynamic programming problems should be solved at the primary-
school-level as the analogous math problems: children formulate and use the hypo-
thetical recursive expressions and implement them with table filling, without extensive
argumentation. Mostly they cannot calculate directly the answer, but they can give a
recursive formula and the direction of filling the table, and this way they can solve the
problem. They can solve basic DP problems, without optimization.

On informatics contest the children use basic data structures (integer, boolean, one
and two-dimensional array of integers, simple strings) and basic algorithms can be ap-
plied for various problems in various wording. Choosing, selecting, counting, search-
ing, summarizing, selecting maximum/minimum, sorting, separating into two groups,
prime testing are these basic algorithms. Stages of solving tasks are understanding the
problem, choosing the right data structure, selecting right algorithm, implementing and
testing it. In addition to the conservative tasks there are ad-hoc problems where children
can apply basic algorithms creatively. The basic DP problems appear in the regional and
national rounds of competitions.

4.4. Tasks in Lower-Secondary-School-Age

In Hungary and many other countries the children continue to learn combinatorial prob-
lems in grades 9–10 in mathematics lessons, they group and formalise these problems.
During these years, they also meet the idea of mathematical induction, so they can prove
the previously discovered recursive formulae. They learn about sequences and some-
times they give the explicit formulae for recursive expressions. They know the formula
of n! and �𝑛𝑘� , they also learn Pascal-triangle. But they do not necessarily know the
relationship between the binomial coeffitients and the Pascal-triangle.

They can discover and solve more complex recursive expressions, sometimes these
functions call each other, like:

How many different covering exist on a 2*N table with 1*2 and 1*1 size dominos?

Drawing it systematically is not enough to formulate the recursive expression.
One must analyze possible cases. The result comes with two expressions in simul-
taneous recursion: dn = an–1 + fn–1, fn = an–1 + dn–1, an = 2*an–1 + an–2 + fn–1 + dn–1.
After simplification: an = 3*an–1 + an–2 – an–3.

Fig. 8. a1 = 2, a2 = 7, a3 = 22, a4 = 71 – Counting with drawing systematically.

The Place of the Dynamic Programming Concept in the Progression ... 69

In this age they learn the basics of graph theory in mathematics, they learn types
of graphs (trees, binary trees, relational matrix), storage of graphs (vertex matrix, edge
matrix, edge list) and algorithms of graphs (breadth first traversal, depth first traversal,
relations) in informatics. They meet recursion again, divide and conquer, backtrack, and
greedy algorithms too, on basic level.

They learn all classic dynamic programming problems, as follows:

Partition problem – Divide the set of numbers into two groups, where sum of
each group is same!

Longest Increasing Subsequence – Find the length of the longest subsequence
of a given sequence, such that all the elements are sorted in increasing order.

Knapsack Problem – A thief robbing a store can carry a maximal weight of W
in his knapsack. There are N items and ith item weighs wi and is worth vi dollars.
What items should the thief take?

Contiguous subsequence with maximum value – Find the contiguous array
with the maximum sum in a given an array, containing both positive and negative
integers!

Minimal number of coins for change – What is the minimal number of coins, to
make change for a given amount T only coins of values v1, v2, …, vn can be used?

These examples can be solved by using recursion with optimization, the right order
of filling the table must be given usually it is not evident. There are a number of varia-
tions of these problems, sometimes the difference is merely wording.

Next type of DP problems is game strategy in various formats, like:

Optimal Strategy – Consider a row of N coins of values v1, ..., vN, where N is
even. We play a game against an opponent by alternating turns. In each turn, a
player removes either the first or last coin from the row and receives the value
of the coin. Determine the maximum possible amount of money we can definitely
win if we move first?

Basic data structures may be supplemented with string and real. There are a number
of dynamic programming problems with strings, too:

Longest Common Subsequence – Find the longest common subsequence of two
strings, where the elements are letters from the two strings and they should be in
the same order!

Longest Common Substring – Find the longest common substring of two
strings!

Edit Distance – Given two strings and a set of operations Change (C), insert (I)
and delete (D). Find minimum number of operations required to transform one
string into another!

On informatics contest classic dynamic tasks can be in every round, so the contestants
have to be ready to solve it.

Á. Erdősné Németh, L. Zsakó70

4.5. National Olympiads

In grades 11–12 contestants prepare for national Olympiads. They know a lot of algo-
rithms, in these years they learn to use advanced data structures, like set, priority queue,
stack, and they implement previously learned algorithms with these data types. While in
previous years they were asked for the existence of the solution or the number of steps
in the solution, now they also have to decrypt the entire path traversal in dynamic pro-
gramming problems.

Sometimes there are strict memory limits and there is no space for the whole table. In
this case, only the values of those cells have to be stored in memory, which are essential
to the calculation of the next row. During the decryption process the rebuilding of the
table may be as hard and interesting to implement as the original problem.

They learn about combinatorial and geometrical problems.
Within the concept of divide and conquer, recursion or dynamic programming more

complicated expressions should be optimized.
There are advanced DP problems: all possible transitions and dynamic greedy type.
Example of complicated problems:

Balanced Partition – There is a set of N integers each in the range 0 ... K. Parti-
tion these integers into two subsets such that you minimize |S1 – S2|, where S1
and S2 denote the sums of the elements in each of the two subsets!

The dynamic programming concept among strings also leads complicated problems,
like:

Shortest Palindrome – Form a shortest palindrome by appending characters at
the start of the given string.

Palindrome Min Cut – Find the minimum number of cuts required to separate
the given string into a set of palindromes.

Longest Palindromic Substring – Find the longest palindromic substring of a
given string!

Longest Palindromic Subsequence – Find the longest palindromic subsequence
of a given string!

The contestants in the upper secondary age want to be computer scientists or engi-
neers, they do not only know the basic algorithms but they can cope with complex tasks.

4.6. Regional and International Olympiads

When you want to prepare for Regional or International Olympiads you have to know
everything about dynamic programming which is included in the textbooks. You have
to solve a huge number of tasks. On Olympiads the solution of tasks are some kind of
creative mixture of known algorithms.

Some examples:

Interval-Scheduling Problem (Greedy and DP Approach) N k-tuples processes
are given with start & end times. Select as many processes as possible such that

The Place of the Dynamic Programming Concept in the Progression ... 71

(I) no two selected processes intersect and (II) at most one process is selected
from each k-tuple!

intersec Complete all tasks given the deadline, so that no task overlap!

Box Stacking – You are given a set of N types of rectangular 3-D boxes, where
the i^th box has height h(i), width w(i) and depth d(i). You want to create a stack
of boxes which is as tall as possible, but you can only stack a box on top of an-
other box if the dimensions of the 2-D base of the lower box are each strictly
larger than those of the 2-D base of the higher box. You can rotate a box, any of
the side can be its base. It is also allowable to use multiple instances of the same
type of box.

Counting Boolean Parenthesizations – You are given a boolean expression con-
sisting of a string of the symbols ‘true’, ‘false’, ‘and’, ‘or’ and ‘xor’. Count the
number of ways to parenthesize the expression such that it will evaluate to true.
For example, there are 2 ways to parenthesize ‘true and false xor true’ such that
it evaluates to true. The order is defined only by parentheses.

There are many tasks for practice on the online preparing and contest sites, like
usaco.org, codeforces.com, codechef.com, uva.onlinejudge.org, spoj.pl. If you have met
each type of concept detailed above, the textbook of Halim is a good choice for prepar-
ing for IOI.

5. Conclusions

Some antecedents of the dynamic programming concept for example the concept of re-
cursion, might come up in earlier mathematics and informatics studies. If you are aware
of this, introducing DP as a new problem-solving strategy is much easier.

We think, if you want to teach the technique of DP you have to start from a simple
recursion then through memoization and table filling you could end with a real DP for
optimization problems. You could start the whole process in the primary school age and
circularly, returning to it in higher and higher levels your students would be familiar with
this hard concept.

In the upper primary school, the basic DP comes up: a recursive expression imple-
mented with table filling. At the beginning of secondary school, the classic DP programs
continue the sequence: recursive expressions with optimization and at implementation
the right order of table filling need to be thought of. In upper secondary school, the
children can be familiar used with advanced types of DP: all of the previous problems
with the retrieval of the way, how the optimal solution is built up, dynamic greedy type
and the type, when you have to keep track of all possible transition states. Preparing for
Olympiads, the students need everything from textbooks and the combination of other
types of approaches.

Finally, it would not be magic for the contestants, just a useful problem-solving
strategy.

Á. Erdősné Németh, L. Zsakó72

References

Bebras–International Contest on Informatics and Computer Fluency (2007–2015). http://bebras.org
http://www.beaver-comp.org.uk/; http://informatik-biber.de/archiv/

Bebis, G. (2007). CS477/677 Analysis of Algorithms.
http://www.cse.unr.edu/~bebis/CS477/

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2001). Introduction to Algorithms. MIT Press, 2nd edi-
tion.

Dagienė, V., Stupurienė, G. (2016). Bebras – a sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V. (2006). Algorithms. McGraw-Hill.
Dreyfus, S. (2002). Richard Bellman on the birth of dynamic programming. Operations Research, INFORM.

50(1), 48–51.
Erdős, G. (2010). A rekurzív módszer. In: Magas Szintű Matematikai Tehetséggondozás Konferencia, ZALA-

MAT. 20–32.
Forišek, M. (2015). Towards a better way to teach dynamic programming. Olympiads in Informatics, 9, 45–55.
Gupta, N. (2009). Introduction to Algorithms.

http://www.curriki.org/oer/Introduction-to-Algorithms/

Halim, S., Halim, F. (2014). Competitive Programming 3. The New Lower Bound of Programming Contests.
http://cpbook.net/

Horváth, Gy. (2004). A programozási versenyek szerepe az oktatásban. In: INFOÉRA Konferencia.
http://www.infoera.hu/infoera2004/eaok/horvathgyula.pdf

Kleinberg, J., Tardos, É. (2006). Algorithm Design. Addison-Wesley.
Sedgewick, R., Wayne, K. (2011). Algorithms, Fourth Edition. Addison-Wesley.
Skiena, S.S. (2008). The Algorithm Design Manual. Springer-Verlag, 2nd edition.
Steinhardt, J. (2008). Advanced Dynamic Programming Techniques.

https://activities.tjhsst.edu/sct/lectures/0708/dpadvanced.pdf

Á. Erdősné Németh teaches mathematics and informatics at Batthyány
Lajos High School in Nagykanizsa. A lot of her students are in the final
rounds of the national programming competitions, some on CEOI and
IOI. She is a Ph.D. student in the Doctoral School of Faculty of In-
formatics, Eötvös Loránd University in Hungary. Her current research
interest is teaching computer science for talented pupils in primary and
secondary school.

L. Zsakó Dr. is a professor at Department of Media & Educational
Informatics, Faculty of Informatics, Eötvös Loránd University in Hun-
gary. Since 1990 he has been involved in organizing of programming
competitions in Hungary, including the CEOI. He has been a deputy
leader for the Hungarian team at International Olympiads in Informat-
ics since 1989. His research interest includes teaching algorithms and
data structures; didactics of informatics; methodology of programming
in education; teaching programming languages; talent management.
He has authored more than 68 vocational and textbooks, some 200
technical papers and conference presentations.

