
Olympiads in Informatics, 2017, Vol. 11, 193–198
© 2017 IOI, Vilnius University
DOI: 10.15388/ioi.2017.17

193

Casual Programming: A Channel for
Widespread Computational Education

Shaya ZARKESH
Polyup Inc., USA
email: shaya@polyup.com

1. Introduction

Over the last ten years, casual gaming has seen an impressive rise to the mass market.
The smartphone industry currently poses the fastest-growing sector of videogames,
with an incredible 23.7% year-over-year growth (Newzoo 2017). Smartphone games
present the biggest opportunity to reach a mass market for casual gaming, so an in-
crease in smartphone game popularity is indicative of a greater general shift towards
casual gaming.

The question thus becomes the following: how do we harness the megatrend of casu-
al gaming for good? How do we turn smartphone games into useful, educational tools?

At Polyup, we aim to answer these questions to empower a global community of
creative problem solvers. Taking into account the wild popularity of casual gaming, we
set out to find the best path to help primarily older children and teens, but also adults,
with their “computational thinking” skills. Computational thinking lies at the heart of
new topics becoming indispensable in the information age – subjects like data science,
cryptography, informatics, and artificial intelligence. Computational thinking is a way of
approaching and analyzing computational problems by honing the skills of pattern rec-
ognition, decomposition, abstraction, and algorithm design (Wing 06). In a sense, com-
putational thinking is like critical thinking for STEM – whereas critical thinking focuses
on finding relationships between ideas in written text, computational thinking is devoted
to finding patterns in numerical contexts. Although the concept is immensely important
to many STEM fields like mathematics and computer science, it often goes unaddressed
directly in schools, and students are thus left without the ability and creativity to solve
more difficult computational problems on their own. By creating an attractive casual
game where users can lead their own learning, Polyup can help fill in the 21st-century
skills that most of today’s population lacks.

So, enough introduction. What is this mysterious environment that Polyup has cre-
ated? In short, it is the world’s first mobile, casual programming environment. While

S. Zarkesh194

block-based environments have been available on tablets and computers for years, there
has yet to be a major environment optimized for mobile phones. Because of massively
constrained screen real-estate, it seems a programming environment on a phone would
require a major simplification and reduction of features. However, in the sections that
follow, we detail how Polyup’s gamified programming environment still retains all pos-
sible computational tasks and is thus Turing complete.

2. Learning by Teaching

One of the most effective and motivating ways to learn is by teaching others. The story
behind Polyup capitalizes on just that – it revolves around teaching an AI sidekick
named Poly. At first, Poly gloats about all his ability in the computational program-
ming environment; he knows how to do everything from solving quadratic equations
to proving Fermat’s last theorem! However, Poly’s hubris soon leads to his demise, as
he attempts a program too computationally complex for his own good, and his internals
break, leaving his memory banks empty. From here on, it is the player’s job to (re)teach
Poly all that he has forgotten, starting from basic tasks like adding numbers to more
complicated ones like calculating factorials and building a GCD (greatest-common-
denominator) algorithm.

Learning by Teaching is not a novel idea – it is embedded in modern pedagogy, espe-
cially given new opportunities posed by digital learning (Biswas 05). However, Polyup
takes a novel approach to Learning by Teaching by combining it with dynamic scaffold-
ing, the adjustment of difficulty mid-game based on player performance.

Polyup is a level-based system: the player has to solve puzzles by creating a pro-
gram to achieve a stated output. The levels are of increasing difficulty, but no player
will traverse every level. Levels are designed such that multiple levels teach a similar
concept; when it is clear the user has mastered a programming concept, they move
on to a more difficult one. Otherwise, if the user is unable to pass a level quickly and
efficiently, it seems they have not mastered the concept, so further levels on the same
concept are given. Such is the backbone of dynamic scaffolding. By implementing
dynamic scaffolding in a level-based system, Polyup is adaptable to any skill level in
programming. Furthermore, by using a non-classical programming paradigm, Polyup
levels the playing field between experienced programmers familiar with programmati-
cally syntax and those unfamiliar with any programming languages, thus making the
educational experience universal.

3. The Environment

One of the most difficult aspects of creating a mobile programming environment is re-
taining functionality while simplifying the interface to manage a small amount of screen
space available. In particular, typing on a phone is cumbersome and frustrating, so we

Casual Programming: A Channel for Widespread Computational Education 195

avoided typing altogether. Like many existing educational programming environments,
we thus resorted to a gamified form of block-based programming. However, the similari-
ties to existing environments end there: we have completely rethought the programming
paradigm and implemented a novel, simpler user interface.

The first major deviation Polyup has taken from most existing programming environ-
ments is the use of a functional programming environment with Reverse Polish Notation
(RPN). The functional programming part means that the environment evaluates expres-
sions immediately instead of executing statements. RPN is a style of programming in
which the operator follows the operands (e.g.: 5 2 +), instead of putting the operator
between operands like in classical mathematics (e.g.: 5 + 2). Such a notation has a dual
purpose: first, it removes the need for parentheses, thus greatly simplifying the program-
ming experience, and second, it exposes the user to a new programming paradigm, mak-
ing them think of operators as functions. Unlike the typical step-based environments,
Polyup’s environment truly requires the player to think about the order of operations and
how operators and operands will interact.

Polyup’s user interface is also unlike most step-based programming languages in that
it allows for manipulation of multiple functions on the same page. At the base level, the
user interface of Polyscript involves dragging blocks onto a main stack of blocks, called
“Poly,” and any number of additional stacks. In Fig. 1 is a level in Polyscript; note the
general layout of a puzzle with a target text on top, a function (stack) in the middle, and
a set of draggable blocks available on the bottom.

Fig. 1. (left) A simple level in Polyscript (right) the level running.

S. Zarkesh196

In Fig. 2 the custom workspace is shown; here, the user has full creative control
over the program, with draggable blocks organized into panes.

The panes are laid out as follows:
Number Pane
The number pane contains a system for typing any number or decimal. It contains blocks
for the digits 0 through 9, as well as a decimal point; the user can either tap a sequence
of these numbers to make a longer number, or drag any block directly to the stack for a
number from 0 through 9.

Math Pane
The math pane contains the four basic operations +, –, ×, ÷ as well as more advanced
functions like sin and mod.

Variable Pane
The variable pane contains the variable names x, y, and z, as well as the set blocks ->x,
->y, ->z. A set block is an operator that takes in the value above it and sets the respective
variable to that value. The variable blocks are operands that are simply references to the
values contained in them.

Boolean Pane
The Boolean pane contains the Boolean values, True and False, and the inequality sym-
bols >, <, ≥, and ≤. It also contains the “if”, block, an operator that takes in a Boolean
value and two functions: one for the “True” case and one for the “False” case.

Fig. 2. A more complicated program written in Polyscript.

Casual Programming: A Channel for Widespread Computational Education 197

The magic of Polyup lies in its extremely simple compiler. A pointer reference starts
at the top of Poly’s stack and continually moves down. If it hits an operand, nothing
occurs. If it hits an operator, the operator “eats” a number of blocks above it, corre-
sponding to the number of values it takes in (e.g. the + operator takes in 2 values, so the
2 blocks above the “+” are eaten). If the pointer hits a reference to a “file”, it adds the
file to the stack and continues moving down. The program ends when the pointer hits
the bottom of the stack.

4. Expanding the Scope: Socializing the Platform

Any gamified environment will have a hard time attracting users if it does not implement
interaction with real humans, in order to motivate users to be the best at the game. Polyup
thus implements multiple avenues for social interaction in-game. First, there is a puzzle
challenge system where a player can create a level and challenge his or her friends to
tackle it. Second, we have a live co-editing mode where two players can collaborate on
the same puzzle workspace. Lastly, leaderboards for puzzle solving allow players to see
their relative rank in problem solving ability, as determined by the dynamic scaffolding
algorithm of the app. These avenues for social interaction can make the app far more
attractive and create a viral effect, whereby players willingly share the app with friends
in order to challenge or collaborate with them.

5. Results and Conclusions

Polyup is currently undergoing rapid prototyping of its application and has visited many
middle and high schools to receive feedback, much of which has been implemented in
its current conception. Responses are overwhelmingly positive. Of 39 students surveyed
in the latest major version of the app, the average rating is 7.46. Of the 8 who came from
an underprivileged high school, the average rating is 8.13! These results are staggering,
and are indicative of the fact that Polyup has built an extremely attractive educational
programming environment.

We have introduced and reviewed a novel educational programming environment
set forth by Polyup. By gamifying the programming environment and translating pro-
gramming to mobile, Polyup has created a more attractive and approachable environ-
ment to gain computational skills. By partnering with existing educational resources and
competitions, Polyup has the potential to gain widespread use as a go-to computational
learning application.

S. Zarkesh198

References

Biswas, G., Leelawong, K. (2005). Learning by teaching: a new agent paradigm for educational software.
Applied Artificial Intelligence, 19(3), 363–392.

The Global Games Market Reaches $99.6 Billion in 2016, Mobile Generating 37%. Newzoo, Jan. 2017.
Wing, J.M. Computational thinking. (2006). Communications of the ACM, 9(3).

S. Zarkesh is a rising senior at the Harker high school in California’s
bay area. He is an avid coder and math student and has won many
regional and national awards in these fields, including national cham-
pion at TSA TEAMS (Tests of Engineering Aptitude, Mathematics,
and Science) 2016 and the Science Bowl Regional Champion of 2017.
Shaya is a co-founder of Polyup Inc., a high-tech startup in Silicon
Valley founded in 2015.

