
Olympiads in Informatics, 2017, Vol. 11, 87–92
© 2017 IOI, Vilnius University
DOI: 10.15388/ioi.2017.07

87

A Competitive Programming Approach to a
University Introductory Algorithms Course

Antti LAAKSONEN
Department of Computer Science
University of Helsinki
e-mail: ahslaaks@cs.helsinki.fi

Abstract. This paper is based on our experiences on teaching a university introductory algorithms
course using ideas from competitive programming. The problems are solved using a real program-
ming language and automatically tested using a set of test cases. Like in programming contests,
there are no hints and well-known problems are not used. The purpose of such problems, com-
pared to traditional problems, is to better improve the problem solving skills of the students.

Keywords: algorithms course, competitive programming.

1. Introduction

This paper summarizes our experiences on teaching the Data Structures and Algorithms
course at the University of Helsinki using ideas from competitive programming. The
course deals with basic data structures and algorithms, such as trees, graphs and sorting.
The course is a compulsory course for computer science students, and it is usually taken
during the first year of studies. The course book is Introduction to Algorithms (Cormen
et al., 2009), though the course covers only a part of the book.

For some years ago, the course was purely theoretic and algorithm design problems
were solved using pen and paper and discussed in exercise sessions. However, it was
observed that the learning results were not good and many students had difficulties in de-
signing even very simple algorithms. After this, some ideas from competitive program-
ming have been used on the course to improve the student’s problem solving skills.

The competitive programming approach is based on the following ideas:
The algorithm design problems are presented without hints and the solutions can-●●
not be easily found using search engines.
The solutions are implemented using a real programming language and automati-●●
cally graded using a set of test cases.
Solutions are given points only if they work correctly and efficiently, and tech-●●
niques for testing and debugging are presented.

A. Laaksonen88

The above ideas have been used in programming contests for a long time, but we be-
lieve that they have potential to be used much more widely also on university algorithm
courses. This does not mean that the courses should be competitive: only the problem
types and the way the solutions are evaluated resemble the practices used in program-
ming contests.

Of course, it is not a new idea to use automatic program evaluation in a university
course. For example, García-Mateos et al. (2009) describe a programming course where
the final exam is replaced with a series of programming contests using the Mooshak
system, and Enström et al. (2011) present their experiences after using the Kattis system
in several algorithm courses.

In this paper, we focus on the features of competitive programming style problems.
First, we describe the way the competitive programming approach has been used on our
course. After this, we discuss some of the advantages and disadvantages of the approach.

2. Course Organization

The course consists of 12 weeks. Every week there are two problem sets: a set of al-
gorithm design problems and a set of other problems. The algorithm design problems
follow the competitive programming approach: they are submitted in an online course
system and evaluated automatically. The other problems include simulation problems
and mathematical problems.

The competitive programming approach was introduced in the course in 2011. Ini-
tially, the DOMjudge system1 was used to evaluate the solutions. However, this system
was not optimal for the course, because it is intended for ICPC style contests and only
shows if a solution is correct or not.

Since 2012, the TMC system (Pärtel et al., 2013) has been used on the course. This
system is also used in the introductory programming courses at the University of Hel-
sinki. TMC allows students to create their Java solutions in the NetBeans IDE and evalu-
ates the solutions using JUnit tests. The tests are written by the course staff and can be
downloaded using the TMC plugin.

The algorithm design problems are renewed every now and then so that the students
do not get too familiar with them. For example, one of the first problems in the fall 2014
iteration of the course was as follows:

Given a string, your task is to create a palindrome by removing exactly one
letter from the string. For example, the string ABCBXA can be turned into a
palindrome by removing the letter X.
Your task is to implement the following method:
boolean almostPalindrome(String s)

The parameter s is a string that consists of at most 105 letters. The method
should return true, if it is possible to create a palindrome by removing exactly

1 https://www.domjudge.org/

A Competitive Programming Approach to a University ... 89

one letter, and false otherwise.
Time limit: 2 seconds.

The above format is used in all algorithm design problems. First there is a short prob-
lem statement, then a template for a Java method and an explanation what the method
should do. In each problem, there is also a certain time limit for a single test case.

To get points for the problem, the student has to implement a method that corre-
sponds to the problem statement and works efficiently in all test cases. An important
detail in the above problem statement is that the string can be quite long (105

 letters).
Thus, the intended solution should work in () or ( log ) time.

The benefit in using JUnit tests is that if the algorithm does not work correctly, the
tests can give a friendly message to the student. For example, in the above problem, a
message could be ”The string AAABAA can be turned into a palindrome, but your method
returned false.” Depending on the problem configuration, the tests can be either fully
or partially public.

3. Discussion

3.1. Improving Problem Solving Skills

Algorithm design problems are difficult, and it requires a great deal of work to improve
one’s problem solving skills. As algorithm design is difficult, it is a common practice to
include hints in problems. For example, consider the following problem (Cormen et al.,
2009, page 42):

Give an algorithm that determines the number of inversions in any permutation
on  elements in £( lg ) worst-case time. (Hint: Modify merge sort.)

It is definitely easier to solve the above problem using the hint. However, at the same
time, the hint almost completely spoils the problem, and after reading the hint, there is
not much problem solving needed.

Such hints are never seen in competitive programming and there is a good reason for
it: it is an important step in problem solving to consider different ideas how to approach
the problem before finally finding a way to solve it. Using hints it may be possible to
solve problems quickly, but this does not improve one’s problem solving skills.

Still, it is clear that the above problem is difficult and without the hint, the prob-
lem would be impossible to solve for many students who are beginners in algorithm
design. However, we do not think that presenting a hint is a good way to overcome
this. If a problem is too difficult, it should be presented later when the students really
can solve it.

Thus, the challenge is to find problems that require problem solving but are not too
difficult. Fortunately, the easiest problems in many programming contests have those
properties. It is better to solve an easy problem using one’s own skills than to solve a
difficult problem using hints.

A. Laaksonen90

3.2. Originality of Problems

Another benefit in competitive programming problems is that they are – or should be
– original. This ensures that it is not too easy to find solutions to problems just by us-
ing search engines. For example, consider the following problem (Cormen et al., 2009,
page 602):

The diameter of a tree  = ( ) is defined as max2 δ( ), that is, the
largest of all shortest-path distances in the tree. Give an efficient algorithm
to compute the diameter of a tree, and analyze the running time of your
algorithm.

A simple Google search (Fig. 1) can be used to find complete tutorials how to solve
the problem. Of course, nobody is forced to use search engines to solve problems.
However, in practice, many students do this, and this is very harmful to their problem
solving skills. Problems like the tree diameter problem are good examples how to
design algorithms, but they should not be used as course problems, because they are
too well-known problems.

Fig. 1. Solving the tree diameter problem using Google.

A Competitive Programming Approach to a University ... 91

3.3. Focusing on Correct and Efficient Algorithms

The important question after designing an algorithm is: does the algorithm really work?
One way to answer this question is to give a proof which shows that the algorithm works.
However, it is not realistic to expect such proofs in an introductory algorithms course.
Just giving a verbal description or a pseudocode of the algorithm is not satisfactory ei-
ther, because it is easy to make wrong assumptions or skip important details.

In the competitive programming approach, all algorithms are implemented using a
real programming language and the implementations are tested using a comprehensive set
of test cases. This has two important benefits: the students have to precisely describe how
their algorithms work, and after that, they will see if their algorithms are correct or not.

When learning to design algorithms, it is not only important to find correct algo-
rithms to problems but also see why certain approaches do not work. In particular, it is
easy to sketch intuitive greedy solutions to many problems, but such solutions often do
not work in reality.

A side effect of the competitive programming approach is that it also improves pro-
gramming, debugging and testing skills of the students. In competitive programming,
a common way to find a bug in an algorithm is to use stress testing, which involves
generating a large set of random test cases and checking if a brute force algorithm and
an efficient algorithm always agree with each other. Many students are not familiar
with this kind of comprehensive testing, even if they have attended courses on soft-
ware engineering.

Another important factor is the efficiency of algorithms. By implementing and test-
ing algorithms it is possible to see how efficient they are in reality and what is the con-
nection between time complexities and real running times of algorithms. Moreover, it
becomes evident which kind of optimizations are important. Typically, during the first
weeks, the students try to improve their solutions using micro-optimizations without
success, and later understand the importance of time complexities.

The responsibility of the course staff is to create challenging sets of test cases that
ensure that accepted solutions are correct and efficient. This is sometimes difficult: for
example, optimized brute force solutions can be surprisingly efficient. Still, if an algo-
rithm is worth learning, it should be possible to find a test case where it works better than
a brute force algorithm.

3.4. Limits of Competitive Programming

It is clear that some features of algorithms cannot be automatically tested using the com-
petitive programming approach. For example, consider the following problem (Cormen
et al., 2009, p. 223):

Describe an ()-time algorithm that, given a set  of  distinct numbers and
a positive integer  ≤ , determines the  numbers in  that are closest to the
median of .

A. Laaksonen92

It is easy to solve the problem in ( log ) time: just sort the array and take the 

middle elements. Designing an () algorithm is a more difficult task. Unfortunately, it
is not possible to automatically test whether the time complexity of an algorithm is ()

or ( log ) by measuring the running time because the difference may be very small.
In general, logarithmic factors in time complexities cannot be reliably detected.

In addition, sometimes it may be a problem that it is possible to guess a solution
to a problem and just test if it works. Of course this also happens in real programming
contests. It is difficult to prevent this, but we do not think it is a problem in an introduc-
tory course. In fact, even in algorithm research, guessing is a valid way to design an
algorithm, though it is required to later prove that the algorithm is correct.

Acknowledgements

The author would like to thank Toni Annala, Matti Luukkainen, Pekka Mikkola and
Kristiina Paloheimo for useful discussions.

References

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to Algorithms. MIT Press.
Enström, E., Kreitz, G., Niemelä, F., Söderman, P., Kann, V. (2011). Five years with Kattis – using an automated

assessment system in teaching. IEEE Frontiers in Education Conference.
García-Mateos, G., Fernández-Alemán, J.L. (2009). A course on algorithms and data structures using on-line

judging. ACM SIGCSE Bulletin, 41(3), 45–49.
Pärtel, M., Luukkainen, M., Vihavainen, A., Vikberg, T. (2013). Test my code. International Journal of Technol-

ogy Enhanced Learning, 5(3–4), 271–283.

A. Laaksonen received his PhD in Computer Science from the Uni-
versity of Helsinki. He is one of the organizers of the Finnish Olym-
piad in Informatics, and a coach and a team leader of Finnish BOI and
IOI teams. He is the author of the book Competitive Programmer’s
Handbook and one of the developers of the CSES contest system.

