
Olympiads in Informatics, 2018, Vol. 12, 43–52
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.04

43

Algorithmic Cognition and Pencil-Paper Tasks

David GINAT
Tel-Aviv University, Science Education Department
Ramat Aviv, Tel-Aviv, Israel 69978
e-mail: ginat@post.tau.ac.il

Abstract. Pencil-paper algorithmics was displayed by several IOI studies, which examined
various structural and scientific characteristics of offered tasks, including “what makes a good
task”. We offer an additional facet, of cognitive considerations. We underline the aspects of
abstraction, heuristics, creativity, and declarative conceptions, which are relevant already with
pencil-paper algoithmics. We describe the settings of our country’s Stage-A, pencil-paper exam,
and display cognitive considerations of the exam tasks. We illustrate these considerations with
several single-input tasks, in which hidden patterns should be recognized for effective “compu-
tation by hand”.

Keywords: algorithmic problem solving, cognitive aspects.

1. Introduction

Consider the following Reversing algorithmic task. Given the following sequence of
twenty eight A/B characters: A B B B A B B A A B A A B A A B A B A A A B B A B B B A, what
is the minimal number of reverse-sub-sequence operations necessary for obtaining
the alternating sequence A B A B ... A B? (A Reverse-sub-sequence operation may
be applied on any sub-sequence of consecutive characters; e.g. if applied on the first 4
characters A B B B it will yield B B B A.)

The task specification is short. It requires no special knowledge and involves a sim-
ple operation, to be repeatedly applied on a particular input. The input is not long, but
still long enough so that one will have to reason in an ordered analysis, which will yield
an operational computation from the starting point (the input) to the desired goal. Due
to the limited size of the input, the operational computation can be performed by hand,
without a computer.

More can be said. In solving the task, one should elevate the point of view and fo-
cus on particular task elements, while ignoring others. This involves abstraction. One
should also cleverly process these elements. This involves creative employment of heu-
ristics. And one should convince herself (even if intuitively) of optimality. This involves
declarative conceptions. The cognitive aspects of abstraction, heuristics, creativity, and

D. Ginat44

declarative conceptions are essential in algorithmic problem solving. In this paper, we
relate them to the preliminary pencil-paper exam in algorithmics.

Previous IOI-related studies of pencil-paper algorithmics display and discuss tasks
to be solved at home or in an actual on-site exam (e.g., Burton, 2010; Kubica and Ra-
doszewski, 2010; van der Vegt, 2012; Radoszewski, 2014). Additional studies display
a variety of related forms of non-programming activities (e.g., Dagienė, 2006; Dagienė
and Futschek, 2008; Opmanis, 2009). These studies describe contest settings and offer
task considerations, including those that “make good tasks”. The considerations focus
on task features of structural and scientific characteristics (including time frames, tools
used, mathematical and algorithmic features, sub-tasks and more). In this paper, we re-
late to these characteristics, and add considerations of algorithmic cognition.

We introduce and discuss an approach of preliminary pencil-paper algorithmics,
which comprises the initial OI activity in Israel. In the next section we motivate and
describe the considerations underlying our approach. In the section that follows we illus-
trate the approach with different examples, additional to the Reversing task. In the last
section we mention our implementation experience and enquire about the correlation
and differences between mathematical competence and algorithmic competence.

2. Considerations of Pencil-Paper Algorithmics

We display below setting considerations and cognitive consideration that yield our ap-
proach of pencil-paper problem solving in algorithmics.

Setting Considerations

Wide population.●● In Israel, a limited amount of students study high school com-
puter science (CS), from 10-th grade. In the initial IOI activity we try to reach as
many motivated students as possible, including young mathematics students who
are not necessarily acquainted with programming.
Two-fold goal.●● We aim at promoting interest in algorithmic challenges, as well
as identifying competent algorithmics students. About 3000 students, nation-wide,
show interest in our Stage-A.
National 2-hour exam.●● We announce a national Stage-A exam in the beginning of
the academic year. The exam takes place in the schools, under the supervision of
teachers who print the exam just before it starts.
Teacher involvement.●● We encourage teachers to take part, even if small. We need
the teachers for encouraging students to prepare-for, and attend the exam.
Student preparation.●● Students should have an idea of the exam format. We display
in our website exams of previous years (from 2010).
Four/five different exam tasks.●● We estimate 15 to 45 minutes for a task, in the
2-hour exam. The tasks are ordered according to their levels of difficulty. The
first one is rather simple, so that students will feel that they managed to solve
at least one task. Some questions are optimization questions, some involve a
combinatorial computation, some display a two-player game and ask for the first

Algorithmic Cognition and Pencil-Paper Task 45

move, some are related to generic computational schemes, and some just require
logical reasoning.
Short and simple specifications.●● Reading and understanding a task takes time. We
try to minimize this time. Task specifications are very short, often with a short il-
lustration, and with a single input on which to perform a computation.
Colourful challenges.●● The tasks pose challenge. Usually, there is no story in them,
but students find the tasks colourful, due to their challenge.
No programming knowledge.●● One may do well without programming background.
In addition, programming knowledge in an early age often involves a lot of techni-
cal details, and this may not help much here. What may sometimes help is prior
experience with problem solving.
Single, non-trivial input.●● The vast majority of the tasks involve a single input. The
input is in a size that requires insight and competence. One may sometimes guess
an answer, but this is very unlikely to succeed with a set of tasks. When insight is
obtained, a pencil-paper computation may be performed in a reasonable time. If no
insight is obtained, the computation may take long time, or not take place at all.
Single integer output.●● The answers of the few thousand students are submitted
electronically. Due to the large amount of data, the task outputs are very short –
usually a single integer per task. We believe that it is sufficient for evaluation.
Hints for checking the output.●● Once insight is gained, a careful computation should
yield the right result. Still, in order to help avoiding erroneous calculations, we pro-
vide hints, such as “The digits unit is odd” or “The output is a multiple of 5”.
Partial credit.●● Since a task answer is a single-integer, there is usually no partial
credit. Yet, there are exceptions. Occasionally, upon the electronic checking we
notice that a group of students obtained the same result, which is different from the
correct one. We figure out the rationale for this result, and if we realize that it may
have been obtained from partial recognition of patterns, we give partial credit.
Passing criteria.●● We choose about 300 students, out of up to 3,000 (the number
varies in different years) based on their performance with the more challenging
questions. These students are invited to a more thorough Stage-B exam.

Cognitive Considerations

Although the tasks are single-input/single-output tasks, solved with pencil and paper,
we regard them as reflecting cognitive competencies that are essential for algorithmic
problem solving. We believe that problem solvers should dedicate non-negligible time for
solving a challenge. In a 2-hour exam, with 4 tasks (and perhaps a bonus one), one may
have about 30 minutes per task, on the average. This may be sufficient, for a competent
student in a pencil-paper stage, for gaining insight and capitalizing on it. In this amount
of time one may employ relevant cognitive faculties.

Abstraction.●● Algorithmic problem solving involves abstraction (e.g., Wing, 2006;
Armoni et al., 2006; Ginat and Blau, 2017). Abstraction may be expressed in a
variety of forms. One may notice mapping (reduction) from a given question to
another; or offer an illuminating representation that considerably simplifies the
viewpoint on a given task; or focus on particular elements while ignoring others. In

D. Ginat46

looking at the Reversing task, one should momentarily ignore the inner characters
of a reversed sub-sequence and focus only on its ends, in order to notice the asset
of concurrently “breaking” AA’s and BB’s.
Heuristics and reasoning. ●● Challenging tasks are solved by employing various
kinds of heuristics, such as problem decomposition, backward reasoning, gen-
eralization, and more (Polya, 1945; Schoenfeld, 1992). Rigorous reasoning and
case analysis are combined with the application of heuristics. Hidden patterns are
unfolded. For example, in the Reversing task, careful reasoning/analysis may de-
compose the input disorders into two cases – the case of AA’s and BB’s and the
case where the ends are improper (e.g., an A in the right end). A single reverse
operation may concurrently “break” an AA and a BB. How should a disordered end
be handled? Creativity may help here.
Creativity.●● Solution processes require divergent thinking (e.g., Ginat, 2008). In do-
ing so one may need to examine several solution directions, demonstrate flexible
associations, and invoke original ideas. In attempting the case of disordered ends
in the Reversing task, one may combine flexibility with the heuristic of auxiliary
construction, and add an auxiliary A to the right end of the sequence. This will
transform the end case into an AA/BB case.
Declarative perspective.●● Algorithmic problem solvers naturally turn to operational
reasoning, and go for the “how” computation. Yet, an operative perspective may
be insufficient when one wants to be convinced of correctness and efficiency (e.g.,
Ginat, 2008). For this, one needs to see the declarative meaning, even if not for-
mally, for believing correctness. In the Reversing task, in order to be convinced of
optimality, one should notice that after the auxiliary construction (of an A added
to the right end), the number of AA’s is exactly equal to the number of BB’s, and a
single reverse operation may reduce at most 1 of each.

In the next section we demonstrate the above elements with additional tasks of differ-
ent types, which were posed in our Stage-A exams during the last five years.

3. Illustrations

In the previous section we exemplified cognitive considerations with the Reversing task.
We regard the Reversing task as relatively easy. It was one of the first two questions (out
of four) in the 2012/13 Stage-A exam. The patterns to recognize are not immediate, but
also not very challenging. The following is an additional task of limited challenge.

Sum of sub-sequences. In the following sequence of integers: 4 11 3 5 3 there are
4 sub-sequences of consecutive integers whose sums are multiples of 3. These are the
sub-sequences: 4 11; 3 (the left 3); 4 11 3; 3 (the right 3). Notice that a single integer
is regarded as a sub-sequence. So is the whole sequence. Given the following list of
integers, output the total number of sub-sequences whose sums are multiples of 3?

6 1 4 124 3 6 512 3 1 33 2 2 32 100 813 4 41 1 8 213 5 7 61 8 42 1 4 2 20 8

Hint: the total sum is a multiple of 5.

Algorithmic Cognition and Pencil-Paper Task 47

This task was one of the first two tasks of the Stage-A exam of 2014/15. The chal-
lenge here is to devise a simple scheme that offers an ordered way of counting. Problem
solvers may attempt various types of counting here. They may be based on two observa-
tions: 1. Counting is simplified by examining remainders of 3; and 2. An ordered count-
ing may be carried out with a single pass over the input in which, for each integer – the
number of sub-sequences that it “ends” will be added to a total sum. We may specify a
corresponding declarative notion.

The number of sums that are multiples of 3, which an integer v ends, is
equal to: the number of integers to the left of v in the input, for which
the mod-3 remainder of the sum from the left-end to each of them
equals the mod-3 remainder of the sum from the left-end to v.

One does not need to specify the above notion explicitly, but should be able to see it
(or an equivalent one) in order to apply an ordered operational computation with pencil
and paper. The counting involves a feature of working backwards and an abstraction
aspect in which the relevant sums are distinguished from all the possible sums. The
hint may help avoiding calculation mistakes. A student that will not gain corresponding
insight will face difficulties, and may spend a long time on the task.

* * *
The next task involves the two-player game of Chomp. This game was also posed in the
Australian Informatics Competition with a 3×3 chocolate block (Burton, 2010). We dis-
played it in our Stage-A of 2017/18 in a different form.

Board game. Given a board of N×M squares, two players play against each other.
Each player on her turn marks one of the rectangle squares. As a result, this square,
and all the squares to its right and/or above are removed. The game ends when no
squares remain. The player who makes the last move loses the game. If, for example,
in the 3×4 board below the square F is marked, then the squares B, C, D, F, G, H will be
removed. We assume that each player plays the best she can.

A B C D

E F G H

I J K L

A. In the 2×10 board below, the first player will win the game if she marks in her first
move one particular square. Which square should she mark?

A B C D E F G H I J

K L M N O P Q R S T

B. Answer the same question for the upper 3×4 board.

We ask about the first move in a 2-player game in some of our Stage-A exams.
Students who prepare, and look at previous exams should be ready for such questions.
In part A one should examine small rectangles, such as 2×2, 2×3, and 2×4 boards, and

D. Ginat48

generalize. The heuristic of generalization from simple cases will yield the following
declarative, invariant pattern for winning as the first player.

After every move of mine, the top line will be a square shorter than
the bottom line.

One does not need to specify the invariant explicitly, but should see the pattern it
involves. In part B, the board is smaller, and no generalization is needed. But thorough
case analysis should be carried out. All in all, each part involves somewhat different
competencies. In our experience, students felt enthusiastic about this task, though it was
not trivial, and not fully solved by many.

* * *

The next task involves a combinatorial computation that may be solved in various ways.
Combinatorial computations are common in algorithmic problem solving. They appear
in various forms in some of our Stage-A exams. The following task was designed by our
coaching team member Daniel Hadas, for Stage-A of 2017/18.

Watch colouring. Given a round watch with the integers 1..12, and four different
colours; what is the number of different ways to colour the 12 integers so that every
two adjacent integers will be coloured with different colours, and every two opposite
integers (e.g., 5 and 11) will be coloured with the same colour? Hint: the units digit
of the answer is 2.
This task is harder that the previous ones. A student who studied combinatorics may

have some advantage, but the solution will not be immediate. One may try diverse ways
of case analysis, but should be careful not to count some colouring twice or miss a
colouring. In our view, one needs to demonstrate creativity with suitable heuristics in
order to simplify as much as possible the view of the task.

Since the colour of every two opposite integers in the clock is the same, we may re-
duce the task to the colouring of 6 integers in a circle. Counting would have been much
simpler if the integers were in a line and not a circle, since a line has two explicit ends.
The challenge here stems from the need to avoid colouring the two ends, 1 and 6 in the
same colour. How should we do that? A creative embedment of the ������������������notion of “comple-
ment”�� in the heuristic of ���decomposition ���paves the way. We specify the relevant observa-
tion in an operative (rather than declarative) manner.

Rather than adding-up all the legal colouring cases, count all the
ways to colour 1 to 6 in a line, and then remove the ways in which
the colours of 1 and 6 are the same; the number of removed ways is
exactly the number of all the circular colourings of 1 to 5, as we may
view 1 and 6 as one unit, with one colour.

The notion of “complement” appears here with the recognition that the number of
legal circular colourings of 1..5 complements the number of legal circular colourings of
1..6 to the number of line colourings of 1..6. Thus, a “line case” may be viewed as being
composed, number-wise, of two different “circular cases”.

Algorithmic Cognition and Pencil-Paper Task 49

At this point, one should realize that in order to answer the case of “circular 1 to
5”, one needs to know the solution of “circular 1 to 4”; which requires the solution of
“circular 1 to 3”; and so on. This observation involves the heuristic of backward reason-
ing. The pencil-paper calculation should be built bottom-up, in reverse to the backward
reasoning analysis.

All in all, this colourful challenge requires both of the heuristics of decomposition and
backward reasoning, and an elegant creative invocation of the notion of “complement”.

* * *

Our next example is different from the previous ones. It asks a question about the execu-
tion of a given algorithmic process. The question is about a particular state that will be
reached after a given amount of time. Algorithmic problem solvers need not only design
an algorithmic solution but also comprehend a given one. The question is an extension of
an old challenge (about ants), which we assumed to be unfamiliar to the students. Since
the question is somewhat different from others in our Stage-A exam, we posed it as a
bonus, fifth question (in the exam of 2015/16).

Balls on a track. Eleven identical balls are spread on a 100 cm track. The two ends
of the track – location 0 and location 100 are blocked with barriers. Each ball is put
initially in a location indicated (in cm) by an integer below. The balls start moving at
time 0, each in the direction indicated (near its location) below.

the students. Since the question is somewhat different from others in our Stage-A
exam, we posed it as a bonus, fifth question (in the exam of 2015/16).

Balls on a tr ack. Eleven identical balls are spread on a 100 cm track. The two ends
of the track - location 0 and location 100 are blocked with barriers. Each ball is put
initially in a location indicated (in cm) by an integer below. The balls start moving
at time 0, each in the direction indicated (near its location) below.

|| 6 14 24 38 44 50 54 64 74 82 88

Each ball moves in a constant velocity of 1 cm per second. When a ball collides
with a barrier in one of the ends, or when it collides with another ball, it switches its
moving direction (and continues to move in the same velocity). For example, the
balls that are initially in locations 44 and 50 will collide 3 seconds from the start,
and will switch their moving directions. What will be the location of the ball that is
initially fourth from the left (in location 38) after 5 minutes from the beginning?

The solution of this task requires abstraction. An examination of the movements of
explicit balls yields a cumbersome, probably impossible pencil-paper computation.
One may do much better with an alternative perspective, in which some details are
disregarded.

Since the balls are identical, and their velocities are the same, one may regard each
ball as anonymous and overlook the ball collisions. This viewpoint enables a view of
a collision between two balls as an event that does not have any impact on the
movements of the two identical balls in their original directions. This abstract point of
view considerably simplifies the view of the task.

In addition, one may further extend this train of thought to disregard collisions
with the right and the left ends. One may pretend that there are no left-end and right-
end, and extend the track with a sequence of its copies in each direction. This allows
one to view each ball as moving steadily in its original direction for 300 seconds.
Once one obtains the final location of each ball in the sequence of copies, one may
return to the original task, and transform this location into a concrete location in the
given track. Since the balls remain in their original order, the answer would be the
location that will be fourth from the left.

All in all, they key feature of the solution is abstraction, in which one does not
view the task in its original arrangement, but rather as one with an arrangement
yielded from an "as if" perspective (Ginat, 2010), of "anonymous" balls that collide
neither with each other nor with the barriers.

3. Discussion

The examples presented in this paper display tasks with diverse characteristics that
may be relevant for a preliminary stage of the OI activity. Elements that were
embedded in the examples include: algorithmic design with a repeatedly used
operator, summation schemes, game instances, invariance, the notion of complement,
case analysis, logical reasoning, algorithmic tracing, and more. Such elements are
apparent in algorithmic problem solving.

Each ball moves in a constant velocity of 1 cm per second. When a ball collides
with a barrier in one of the ends, or when it collides with another ball, it switches
its moving direction (and continues to move in the same velocity). For example, the
balls that are initially in locations 44 and 50 will collide 3 seconds from the start,
and will switch their moving directions. What will be the location of the ball that is
initially fourth from the left (in location 38) after 5 minutes from the beginning?
The solution of this task requires abstraction. An examination of the movements

of explicit balls yields a cumbersome, probably impossible pencil-paper computation.
One may do much better with an alternative perspective, in which some details are
disregarded.

Since the balls are identical, and their velocities are the same, one may regard each
ball as anonymous and overlook the ball collisions. This viewpoint enables a view of a
collision between two balls as an event that does not have any impact on the movements
of the two identical balls in their original directions. This abstract point of view consid-
erably simplifies the view of the task.

In addition, one may further extend this train of thought to disregard collisions with the
right and the left ends. One may pretend that there are no left-end and right-end, and ex-
tend the track with a sequence of its copies in each direction. This allows one to view each
ball as moving steadily in its original direction for 300 seconds. Once one obtains the final
location of each ball in the sequence of copies, one may return to the original task, and
transform this location into a concrete location in the given track. Since the balls remain in
their original order, the answer would be the location that will be fourth from the left.

D. Ginat50

All in all, they key feature of the solution is abstraction, in which one does not view
the task in its original arrangement, but rather as one with an arrangement yielded from
an “as if” perspective (Ginat, 2010), of “anonymous” balls that collide neither with each
other nor with the barriers.

3. Discussion

The examples presented in this paper display tasks with diverse characteristics that may
be relevant for a preliminary stage of the OI activity. Elements that were embedded in
the examples include: algorithmic design with a repeatedly used operator, summation
schemes, game instances, invariance, the notion of complement, case analysis, logical
reasoning, algorithmic tracing, and more. Such elements are apparent in algorithmic
problem solving.

Yet, the features that we tried to underline are related to essential cognitive aspects
involved in algorithmic problem solving; in particular those of abstraction, heuristics
employment, creativity, and declarative conceptions. The relevance of these aspects was
shown here with pencil and paper tasks.

We exemplified diverse appearances of these aspects with several illustrations. Ab-
straction was exemplified in the first and second tasks (Reversing and Sum of sub-
sequences) with focusing on particular elements and ignoring others. It also appeared
in the fifth task (Balls on a track) with the notion of “as if”, which involved a change of
perspectives. The employment of heuristics appeared in all the tasks. Particular heuris-
tics that were relevant included problem decomposition, auxiliary construction, gener-
alization from simple cases, and backward reasoning. Creativity appeared in two of the
tasks – creative auxiliary construction in the Reversing task, and creative decomposi-
tion, using the notion of “complement” in the fourth, Watch colouring task. Declarative
conceptions were relevant in all the tasks. It was particularly apparent in observing
optimality in the Reversing task and in recognizing an invariant pattern in the third,
Board game task.

Our experience with the presented tasks (posed in different years) show that the first
two were solved by about a third of the students, the third – by about a fifth of the stu-
dents, the fourth – by less than a tenth of the students and the fifth – by an even smaller
number of students. We noticed that many students spent a long time on the simpler
tasks, and often obtained only partial insight. They were then left with little time for the
harder tasks.

Nevertheless, students were enthusiastic about the tasks. Many spent extra time after
the exam to solve the tasks that they did not manage to solve during the exam. Some of
the teachers were enthusiastic as well, although several of them felt uncomfortable, since
they could not solve the tasks themselves. Interestingly, some of the students invited to
the next stage did not attend it, and said that they attended the Stage-A exam “just for the
challenge” of coping with colourful tasks.

Algorithmic Cognition and Pencil-Paper Task 51

Each year, after checking the answers we choose about one tenth of the students
(250–300 students) for the next stage, according to the tasks they solved. About 15% of
those invited to the next stage are girls. We pay particular attention to students that do
really well in the Stage-A exam. Quite a few remain at the top in the next stages.

Some of the top students are also very competent in our country’s IMO activity. We
wonder about the correlation between success in the IOI and success in the IMO. Obvi-
ously, there is a correlation, but there are also differences.

Mathematical thinking and algorithmic thinking involve the recognition of hidden
patterns, which is strongly tied to declarative conceptions and the notion of “knowing
that” (Ryle, 1949). Algorithmic thinking also involves a strong facet of “knowing how”.
The observations sought by algorithmic problem solvers should yield suitable opera-
tional computations. Competent IOI problem solvers effectively combine the “that” and
the “how”, and usually turn to the “how” only after seeing the “that”. For competent
IMO problem solvers seeing the “that” may often be sufficient.

At the preliminary level of pencil-paper algorithmics we may not expect involved
operational computations. However, it is still relevant to aim for an operational com-
putation that will be carried out only after hidden patters are recognized. The cognitive
aspects underlined here illuminated a facet of recognized “that” that paved the way to an
operational “how”. Suitable awareness of these aspects may assist task designers in their
designed and posed tasks, including pencil-paper tasks.

Acknowledgement

We thank Hanit Galili and Nir Lavee, from the Israel IOI team, for statistical information
about students’ success in our Stage-A tasks.

References

Armoni, M., Gal-Ezer, J., Hazzan, O. (2006). Reductive thinking in computer science. Computer Science Edu-
cation, 16(4), 281–301.

Burton, B. (2010). Encouraging algorithmic thinking without computer. Olympiads in Informatics, 4, 3–14.
Dagienė, V. (2006). Information technology contests – introduction to computer science in an attractive way.

Informatics in Education, 5(1), 37–46.
Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: Criteria

for good tasks. In: Mittermeir, R.T. and Syslo, M.M. (Eds.) Informatics Education – Supporting Educational
Thinking, Lecture Notes in Computer Science, 5090. Springer, 19–30.

Ginat, D. (2008). Learning from wrong and creative algorithm design. Proc of the 39th ACM Computer Science
Education Symposium – SIGCSE. ACM Press, 26–30.

D. Ginat52

Ginat, D. (2010). The baffling CS notions of “as-if” and “don’t care”. Proc of the 41st ACM Computer Science
Education Symposium – SIGCSE. ACM Press, 385–389.

Ginat, D., Blau, Y. (2017). Multiple levels of abstraction in algorithmic problem solving. Proc of the 48th ACM
Computer Science Education Symposium – SIGCSE. ACM Press, 237–242.

Kubica, M., Radoszewski, J. (2010). Algorithms without programming. Olympiads in Informatics, 4, 52–66.
Opmanis, M. (2009). Math contests: solutions without solving. Olympiads in Informatics, 9, 147–161.
Polya, G. (1954). How to Solve it. Princeton University Press.
Radoszewski, J. (2014). More algorithms without programming. Olympiads in Informatics, 8, 157–168.
Ryle, G. (1949). The Concept of Mind. The University of Chicago Press.
Schoenfeld, A.H. (1992). Learning to think mathematically: problem solving, metacognition, and sense making

in mathematics. In: Grouws D.A. (Ed.), Handbook of Research on Mathematics Teaching and Learning.
334–370.

van der Vegt, W. (2012). Theoretical tasks on algorithms; two small examples. Olympiads in Informatics, 6,
212–217.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

D. Ginat – heads the Israel IOI project since 1997. He is the head of
the Computer Science Group in the Science Education Department at
Tel-Aviv University. His PhD is in the Computer Science domains of
distributed algorithms and amortized analysis. His current research
is in Computer Science and Mathematics Education, with particular
focus on various aspects of problem solving.

