
Olympiads in Informatics, 2020, Vol. 14, 3–20
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.01

3

Predicting the Performance of Contestants
in Competitive Programming
Using Machine Learning Techniques

Ammar ALNAHHAS, Nour MOURTADA
Faculty of information technology engineering
Damascus University – Damascus – Syria
e-mail: eng.a.alnahhas@gmail.com, nourmourtadaite@gmail.com

Abstract. Training is an important task in competitive programming, coaches can improve the
training experience if they can get information about the performance of contestants. In this paper,
we study the possibility of using machine learning techniques to build a system that is able to
predict the future performance of a contestant by analyzing their historical rating list. This system
learns from a dataset of contestant ratings. We propose to apply five different baseline machine
learning techniques, then we propose a new deep learning model. We conduct an experiment us-
ing public data from the Codeforces website. We show that most techniques achieve acceptable
results. In addition, the proposed deep learning model outperformed all baseline methods and
achieved results that proved its efficiency in predicting the future performance of contestants.
This paper confirms the possibility of using machine learning techniques to help in the process of
preparing contestants in competitive programming.

Keywords: competitive programming, machine learning, artificial intelligence, programming
training, Informatics Olympiads.

1. Introduction

Competitive programming has become very popular in recent years. It has been attract-
ing more interest all over the world. Many important competitions in competitive pro-
gramming are organized each year, such as the International Olympiad in Informatics
(IOI) and the International Collegiate Programming Contest (ICPC). Thousands of con-
testants are participating in competitive programming competitions that are held online
and onsite all over the world.

Training is a key element in preparing for competitive programming, therefore,
many institutions like organizers of national Olympiads in informatics and universities
are interested in creating and adopting successful training plans for their contestants
(Combéfis & Paques, 2015), and many training methods are introduced and discussed.

A. Alnahhas, N. Mourtada4

Because of the importance of the training, many coaches follow up with their contes-
tants to support their training process and provide suitable materials and tools. For
this reason, it is important for coaches and people in charge of training to observe and
track contestant performance. It is useful if they have an indicator if the performance
of a contestant is decreasing, so they can help in the early stage and support the con-
testant.

Artificial intelligence has gained more interest in both research and application in
the recent years, it is becoming part of everyday life, many intelligent applications are
helping people doing their work, and it has been used in modern educational systems
to make them more adaptive for learners (Colchester, Hagras, Alghazzawi, & Aldab-
bagh, 2017), machine learning is one of the most interesting branches of artificial intel-
ligence, this field of science is interested in building intelligent systems that can learn
by itself, usually by observing and analyzing a large amount of available data.

As thousands of contestants are now interested in competitive programming, online
training websites like Codeforces provide large amounts of contestant data, so it is pos-
sible to build an intelligent system to help analyze this data and support the training
process using artificial intelligence.

In this paper, we are going to present a methodology that aims at using machine
learning techniques in order to build a system that can predict the future performance
of competitive programming contestants by analyzing a sequence of their historical rat-
ings. We implement some known machine learning models, then we propose a new deep
learning model and prove its efficacy in tracking contestants’ performance by providing
results of empirical experiments on data from Codeforces.

Although coaches can observe their contestants to ensure their performance is not
going to decrease, there are some reasons an automatic system can support this pro-
cess:

The relation between contestant performance and their historical ratings may be ●●
not simple to be detected by humans. Complex patterns may exist in this case.
Computer systems can detect these patterns especially using machine learning
techniques by analyzing big amount of data, and extracting useful information by
generalization.
The number of contestants may be large for coaches to follow up in some cases, ●●
so an automatic system can help by pointing the coaches to potential performance-
decreasing contestants, so that they can do further observations and check the
situation.

Therefore, the proposed system can be seen as a decision support system that helps
coaches during the training process by providing an early alarm, so that they can act in
a timely manner. This system can help coaches of national Olympiads where number of
contestants participating in the training process may be large.

This paper is organized as follows: section 2 provides some related works in the field
of predicting student performance, section 3 presents a formal description of the prob-
lem we are trying to solve, section 4 introduces the baseline machine learning models
application, section 5 proposes a new deep learning model, section 6 contains the details
and results of the experiments, and finally section 7 concludes this paper.

Predicting the Performance of Contestants in Competitive Programming ... 5

2. Related Work

Although no researchers have tried to predict the performance of contestants in competi-
tive programming using artificial intelligence techniques; much research has focused on
using related methodologies to predict school or university student performance as well
as detecting students with poor educational progress. This research varied in the way
they addressed and solved the problem. Some of them used traditional machine learning
techniques, while others tried to use deep learning methods such as convolutional and
recurrent neural networks.

Kotsiantis, Pierrakeas, & Pintelas (2004) proposed to use various machine learning
algorithms to predict the performance of students in a distance learning environment,
they used a dataset that consists of students in an informatic course. The students were
represented by two types of attributes: demographic and performance. Five different
machine learning techniques were applied to predict if a student would succeed or
fail in the final exam. The results showed that the Naïve Bayes algorithm achieved
the best results. Tanner & Toivonen (2010) tried to predict students’ final exam results
in an online touch-typing course in which each student had to pass 12 lessons and a
final exam. The goal of the research was to predict in early stages of the course if a
student was going to fail the exam so that the teachers could provide more tutoring.
The researchers suggested using the K-nearest neighbors (KNN) algorithm, a machine
learning technique that depends on the idea that students with similar attributes tend to
have similar exam results. The authors reported good results using KNN in predicting
student performance. Tan & Shao (2015) presented a machine learning-based system
that helped predict student dropout in an educational system. They argued that the per-
formance of the students is an important factor of dropout, so they suggested building
a binary classifier that can predict if a student will drop out or graduate eventually.
The proposed system used the grades of each student as input, and applied two differ-
ent algorithms to analyze the data: logistic regression and decision trees. The authors
showed that both methods achieved good results. Amra & Maghari (2017) proposed a
system that can predict secondary students’ future performance based on various attri-
butes. They compared two different machine learning algorithms: K-nearest neighbors
and the Naïve Bayes classifier. The results they presented showed that the Naïve Bayes
model achieved higher accuracy. Babić (2017) presented a system that aimed at pre-
dicting student academic motivation. The proposed system depended on the behavior
of students in an online learning management system, and used three different machine
learning methods to classify students: artificial neural networks (ANN), decision trees
and support vector machines. The results were promising and could help educators find
students with poor performance at early stages. Waheed et al. (2020) tried to build a
system that can predict the academic performance of students in a virtual learning envi-
ronment based on clickstream data and assessment results. Their system used artificial
neural networks to categorize students into two classes: success and failure. Authors
compared the results with baseline methods: logistic regression and support vector ma-
chines, and proved that ANN outperformed them. Similarly, researchers Hussain et al.
(2019) proposed to use artificial neural networks to predict student performance based

A. Alnahhas, N. Mourtada6

on internal assessment results. They presented the issue as a classification problem, as
other researchers did, but they compared the results of ANN with two different classi-
fiers: The Artificial Immune Recognition System and AdaBoost. The proposed model
used exam scores and internal assessment marks; the results showed that ANN out-
performed other methods. Sekeroglu, Dimililer, & Tuncal (2019) also used neural net-
works to predict student performance. They suggested two different neural networks,
multilayer perceptron (MLP) and recurrent neural networks, and compared the perfor-
mance of these two networks with support vector machines. MLP proved to be best at
classifying students and predicting performance. Koutina & Kermanidis (2011) tried
to build a system to predict the performance of postgraduate students in order to help
tutors detect students at risk of failing in early stages. The authors used students’ marks
along with some demographic attributes to predict the performance and compared six
well-known machine learning algorithms including support vector machines, Naïve
Bayes and K-nearest neighbor. Their research led to the result that the Naive Bayes
classifier achieved the best results.

Many other researchers were interested in this field (Al-Shabandar et al., 2017; Ofori,
Maina, & Gitonga, 2020; Thai-Nghe, Drumond, Krohn-Grimberghe, & Schmidt-Thie-
me, 2010; Xu, Moon, & Van Der Schaar, 2017). The successful use of machine learning
and deep learning techniques to predict the performance of students in the previous work
is a good indicator that these methods can help predict the performance of contestants
in competitive programming. Especially as many researchers use a similar input pattern
which is the sequence of level rates of the contestant. We are going to apply different
well-known traditional machine learning techniques along with a new deep learning
model to try to achieve the research goal.

3. Formal Problem Statement

The problem we present in this paper is about predicting the future performance of a
contestant participating in a competitive programming training program. Each contes-
tant is assumed to have a rate that reflects their excellence level, which changes over
time to reflect change in contestant performance. The goal is to predict if the level of the
contestant is going to increase or decrease according to the historical ratings we already
recorded for them.

We can measure the performance of a contestant by the average of their level ratings,
so if the average increases over time, then we can say that the student performance is
getting better and vice versa.

Formally, if a contestant c has a sequence of n temporally ordered ratings R = r1, r2,
…, rn, we define the function RC(R) as the following:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

Predicting the Performance of Contestants in Competitive Programming ... 7

The function RC denotes the difference in rating average between the first half and
the second half of the rating sequence. Intuitively, if the function RC has a positive value,
the contestant performance is increasing while a negative value means the performance
is decreasing, and this is the case we are interested in, because detecting contestants who
tend to do worse in the future will guide the coaches to provide suitable solutions.
Formally, we define the function T(R) as the following:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

So, the goal of the models in this paper is to predict the value of T(R) given n/2
ratings of a contestant. As the value of T(R) is binary, the problem can be addressed as
a binary classification, that is, each sequence of ratings belongs to either a positive or
negative class. Binary classification problems are well-known to be solved by many ma-
chine learning and deep learning methods that can be trained using a dataset of existing
instances, so the model can generalize and classify new instances of data.

To solve the proposed classification problem, we will apply different types of
baseline machine learning algorithms, then present a novel deep learning model that
achieves good results and outperforms all other methods, as we will elaborate in the
results section.

4. Baseline Machine Learning Algorithms

Machine learning is used to discover data patterns and relationships between variables,
which is helpful in the decision-making process. It is a useful tool for detecting contes-
tants whose level is going to decrease based on their rating sequence. Coaches are then
able to help the weakest ones in a timely manner, and to promote the strongest, thereby
improving contestants’ level. There are several well-known machine learning models
that are usually used in classification tasks. We choose five of them to apply in our study,
and will provide a brief description of how we apply them in this section.

4.1. Random Forest

Random forest (Liaw & Wiener, 2002) is a classification methodology widely used in
machine learning. Random forest is a collection of decision trees (Quinlan, 1986) built
up with some element of random choice. Each decision tree is constructed using ran-
dom features of the data. The trees are not pruned, and each leaf of each tree represents
a class. The algorithm is trained using a bootstrap sampling method. The prediction of
a new item is done by the voting technique, that is, the prediction of each tree is found
according to the leaf reached, then each class is assigned a ratio of trees that voted for it.
The random forest algorithm has been successfully used in many applications; in our

A. Alnahhas, N. Mourtada8

case we construct the forest using our dataset. We build trees from the ratings of the con-
testants, and the forest we construct contains 100 decision trees. We use Gini impurity as
a criterion for splitting tree nodes.

4.2. Logistic Regression

Logistic regression is a binary classification model. It is considered as a baseline for
any binary classification problem, and is a basic fundamental concept in machine learn-
ing. It describes data and estimates the relation between one dependent binary variable
and independent variables. It is a special case of linear regression where the dependent
binary variable is categorical in nature. Linear regression gives a continuous output, but
logistic regression gives a constant output. Logistic regression is suitable for our goal,
where the dependent variable is the contestant class or performance prediction, and the
independent variables are the historical ratings of this contestant. Given the rating se-
quence R = r1, r2, …, rn of a contestant, we define a linear function Z:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

The factors

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 are the model parameters whose value should be found
by the model fitting process.

We apply a logistic function L to the result of the above function to get the value in
the range (0,1):

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

The function L represents the output of the model, and the predicted class is then
found by choosing a suitable threshold th and find the class accordingly:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

The training of the model is done by minimizing the mean squared error between the
function L of the model and the real output of the training samples.

4.3. Artificial Neural Networks

A neural network consists of connected items called neurons, where each neuron has
multiple inputs and a single output. There are many types of neural networks which vary
in the way the neurons are connected to each other. Multilayer perceptron (MLP) is one
of the famous types of neural networks. In MLP neurons are arranged in consecutive
layers where the output of neurons of each layer constitutes the input of the next layer.

Predicting the Performance of Contestants in Competitive Programming ... 9

The first layer is the input layer, and the last layer is the output layer whose output is
considered the output of the whole network. MLP is used widely in machine learning as
it can learn from existing samples of data and generalize the pattern to be applied to new
items, so it is useful in various classification and regression tasks. In our work, we use
MLP as a binary classifier; we use a three-layer MLP. The first layer is the input layer
which consists of neurons where each neuron corresponds to a rating from the input, the
second layer is a hidden layer and the third layer is the output layer which consists of a
single neuron. Fig. 1 shows the network architecture. The activation function for the first
and second layers is the ReLU function, which is a positive linear function, whereas the
activation function of the output layer is sigmoid:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

The output of the Sigmoid function is in range (0,1). To get the final class we choose
a suitable threshold th and find the class accordingly:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

To train the network we use the Adam algorithm (Kingma & Ba, 2014) and cross
entropy as a loss function.

Contestant's rating list

Output

Fig. 1. Proposed MLP architecture.

A. Alnahhas, N. Mourtada10

4.4. Naïve Bayes Classifier

The Naive Bayes algorithm is an effective and efficient classification method in machine
learning. A Naive Bayes classifier is a simple probabilistic classifier based on applying
Bayes’ theorem with strong (naive) independence assumptions. Bayes’ theorem depends
on the following relationship, given class variable y which denotes contestant perfor-
mance prediction and the dependent feature vector, which is the historical ratings of this
contestant r1 through rn:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

To train our model, we use two different methods. Firstly, we train a Gaussian Naïve
Bayes Model which implements the Gaussian Naive Bayes algorithm for classification.
Gaussian Naïve Bayes theorem states the following relationship:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

Secondly, we train a Multinomial Naïve Bayes Model which implements the naive
Bayes algorithm for multinomial distributed data. The distribution is parametrized by
vectors

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛) for each class y.
Where:

 ●● n is the number of ratings.
 ●●

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

 is the probability

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦) of rating i appearing in a sample belonging to class
y.

Multinomial Naïve Bayes theorem states the following relationship:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

Where:

 ●●

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1, 𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

 is the number of times rating appears in a sample of class in
the training set .
 ●●

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

 the total count of all ratings for class .

4.5. Support Vector Machine

The Support Vector Machine (SVM) is one of the most popular machine learning clas-
sifiers. It is a supervised learning algorithm used for both classification and regression.
SVM is effective and efficient for two-class problems; it is based on finding a hyper-

Predicting the Performance of Contestants in Competitive Programming ... 11

plane in n dimensional space that splits the data points. This hyperplane should have the
maximum margin to the nearest data points, and it forms a decision boundary so that
the separation between two classes is as wide as possible. In this paper, as our target is
formulated as a binary classification problem, we train a Support Vector Machine Classi-
fication Model in the space with n dimensions where n is the number of historical ratings
we consider for each contestant. We train a nonlinear support vector machine with the
kernel trick, using the radial basis function kernel.

As SVM output is discrete, probabilistic Support Vector Machine (PSVM) is a varia-
tion of SVM where multiple SVM is applied with multiple cross-fold operations on the
dataset, the output of PSVM is continuous and falls in range [0,1]. In this paper we try
out both SVM and PSVM.

5. Proposed Deep Learning Model

Deep learning is a subclass of machine learning. In deep learning, data itself is not con-
sidered as features for classification, but higher-level features are extracted from the data
in order to enhance the accuracy of the classification process by finding features that are
conceptually more expressive.

Deep neural networks are the most common implementation of deep learning, where
some layers are added to extract semantic representation of data that is used for clas-
sification with ANN layers.

Recurrent neural networks (RNN) (Jain & Medsker, 1999) are well-known for process-
ing sequential data, especially when the data is temporally ordered. This network consists
of units, where each unit corresponds to an item of the processed sequence. The input of
each unit is formed by both the output of the previous unit and the corresponding item
from the sequence; hence, the network is able to capture the temporal relation between the
items of the data sequence. Long short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997) is a special type of RNN which is more suitable for processing longer sequences.

LSTM can extract latent vector representation, called embedding, from a data se-
quence; the embedding can represent data in a different (usually lower) dimension and
with some useful semantics.

The model we propose in this paper is a deep neural network that consists of five layers:
an embedding layer followed by two LSTM layers and finally two ANN layers. The ratings
of the contestants are integers that reflect their levels. These integers are not sufficient to be
used as the input to recurrent networks, so the role of the embedding layer is to find a vec-
tor representation of these ratings expanding the dimensionality of data from 1 to 64 (we
chose to have the layer generate a vector of 64 values for each rating value). The output of
the embedding layer is n vectors, each with 64 values. This output goes to the second layer,
which is an LSTM layer consisting of 16 units. Each sequence item is used as an encoder
which transforms each vector of its input from 64 values into 16 values, decreasing the
sparsity of the embedding representation. To achieve this, the output of this unit is formed
by the output of each unit, that is, the output is n vectors each having 64 values. The output
is passed to the next LSTM layer which contains 16 units for each item as well; this layer

A. Alnahhas, N. Mourtada12

generates a single vector representation of the ratings sequence, which is the output of the
last unit of this network. This vector has 16 values. The vector representation is passed to
a fully connected ANN network with 10 neurons, this layer is a classification layer whose
activation function is ReLU. Its output is connected to a single neuron which constitutes
the last layer of the network. This neuron has a Sigmoid activation function whose output
is the probability that the input ratings sequence belongs to the positive class, that is, the
contestant performance will decrease. Fig. 2 shows the network structure.

The network is trained by minimizing the cross-entropy loss function and the Adam
optimizer is used to train the network.

6. Experiment and Results

To evaluate the proposed machine learning method along with the deep learning model,
we conduct a real experiment. This section explains the data collection, the evaluation
metrics and the detailed results.

Rating sequence

Embedding layer

LSTM layer

LSTM layer

Dense layer

Output dense layer

Input (n values)

n*64

n*16

16

10

Output: Single value, probability of positive class

Fig. 2. Structure of proposed deep learning model.

Predicting the Performance of Contestants in Competitive Programming ... 13

6.1. The Dataset

To get data about competitive programming contestants, we use the data available from
the website CodeForces.* This website is widely used for training people in competitive
programming, moreover, it provides a rating system that allows each member to have a
rate, which reflects the level of this member and changes after each round of competition
conducted by the website.

Codeforces provides a public application programming interface (API)**, this API
allows access to public data from the website and its users. To collect our dataset, firstly
we used the ‘user.ratedList’ API method to get a list of users who have participated in
at least one rated contest, we are interested only in active users, so we got about 21,000
users. We could get the rating history of each user by using ‘user.rating’ API method, so
we eliminated the users who had less than 20 ratings, leaving us with 6876 users.

We chose 10 as the length of rating sequence that can reflect the contestant perfor-
mance. We generated the dataset items where each item input is a sequence of 10 ratings
and the output is a binary number 0 or 1 calculated by the next 10 ratings using the func-
tion T as described in section 3 of this paper.

Many items may be generated by a single user, as every 20 consecutive ratings of the
user can generate an item, so we used a window with a width of 20 to pass over the con-
testant ratings and generate the items. Eventually our dataset contained 233629 items.

The dataset is imbalanced, that is, the number of items getting better results in the
future is greater than the number of contestants getting worse results. It seems this is
natural as contestants try to get better results, but this fact makes our goal harder to
achieve, as we are seeking contestants with worse results predicted, in order to detect
them early on. Fig. 3 shows the class distribution in the dataset.

The dataset is split into two parts:
Training set: used to train machine learning models and is 80% of the dataset.●●
Testing set: used for evaluation and is 20% of the dataset.●●

*	http://www.codeforces.com
**	https://codeforces.com/apiHelp

Class distribution

Positive Negative

Fig. 3. Class distribution in the dataset.

A. Alnahhas, N. Mourtada14

6.2. Evaluation Metrics

To evaluate the different proposed models, we are going to use well-known evaluation
metrics in classification tasks.

6.2.1. Area Under ROC Curve (AUROC)
The receiver operating characteristics (ROC) curve is an important curve used to evaluate
machine learning models. It represents the relation among sensitivity of the model with
the specificity and the threshold used to choose the class. This curve reflects the perfor-
mance of the model, so the area under this curve can reflect how perfect the model is.

6.2.2. Accuracy
The accuracy of the model is the ratio of the items that are classified correctly:

]

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

Where TP is the number of positive items classified correctly, TN is the number of
negative items classified correctly, and N is the number of all classified items.

6.2.3. Precision
The precision of the model is the ratio of correct positive items:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Where FP is the items that are wrongly classified as positive when they are negative.

6.2.4. Recall
The recall is the ratio of positive items that are correctly classified as positive:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Where FN are positive items that are wrongly classified as negative. This metric is the

most important one in our study, because it is more important to detect most of the con-
testants with performance decreasing rather than getting high classification precision.

6.2.5. F1 Score
F1 score can merge both precision and recall; it is more suitable than accuracy when data
is imbalanced:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Predicting the Performance of Contestants in Competitive Programming ... 15

7. Results

The six models presented in this paper are trained using the training part of the dataset,
then the testing set is used to evaluate the performance of these models.

To handle the data imbalance problem of the dataset, we use class weights during the
training of the models, where each class is weighted so that the weights reflect the ratio
of class in the training data:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑊𝑐 = 𝑁
2 ∗ 𝑁𝑐

Where Wc is the weight for class c, N is the total number of items in the dataset and

Nc is the number of items with class c in the dataset.
Fig. 4 shows the AUROC of the models:

Linear regression (LR).●●
Random forest (RF).●●
Artificial neural network (ANN).●●
Multinomial Naïve Bayes (MNB).●●
Gaussian Naïve Bayes (GNB).●●
Probabilistic Support vector machine (PSVM).●●
Deep learning model (DL). ●●

Note that this measure cannot be calculated for support vector machines as their out-
put is discrete, unlike other models where the output is a probabilistic continuous value
that falls in range (0,1).

We can notice that the deep learning model achieved the best value for this metric.
MLP and RF achieved good results as well, whereas probabilistic models had poor per-
formance.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,53306943
0,638623737 0,672690034 0,679866965 0,720696435 0,733851101

0,899119249

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

GNB MNB LR PSVM RF MLP DL

AUROC

AUROC

Fig. 4. AUROC of different models.

A. Alnahhas, N. Mourtada16

Fig. 5 shows the accuracy of different models: deep learning achieved the best result
for this metric, and the support vector machine had good accuracy as well, whereas lin-
ear regression had the poorest result.

Fig. 6 shows the precision of different models: linear regression outperformed all
other models including the deep learning one. However, this metric does not reflect
the overall performance of the model, because it is more important to detect most con-
testants with poor predicted performance rather than getting a high ratio of correctly
detected contestants.

Fig. 7 shows the recall metric of the different models: the deep learning model has
the highest recall while the random forest model also achieved good results. Recall is
very important as it refers to the ratio of contestants with poor performance that are

Class distribution

Positive Negative

Class distribution

Positive Negative

0,53306943
0,638623737 0,672690034 0,679866965 0,720696435 0,733851101

0,899119249

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

GNB MNB LR PSVM RF MLP DL

AUROC

AUROC

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

Fig. 5. Accuracy of different models.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

0,34092219
0,37759229 0,399142128 0,411353803 0,417046228

0,564546784
0,636617704

0,755522828

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

RF GNB MNB SVM MLP PSVM DL LR

Precision

Precision

Fig. 6. Precision of different models.

Predicting the Performance of Contestants in Competitive Programming ... 17

positively classified. The support vector machine model tends to get very few positive
items, so that it has a very low recall value.

Although recall is important, precision should not be bad, so because the F1 score can
reflect both precision and recall, it is more suitable than accuracy when the data is imbal-
anced as in our case. Fig. 8 shows the F1 score for different models. We can observe that
deep learning model outperforms all other models for F1 score for a high margin.

We can see that the deep learning model achieved good results. In fact, it gets the
best results for most metrics, which can be explained by the capability of the LSTM
network to encode sequential data. In addition, we used a vectorized representation of
ratings in this model using the embedding layer. Fig. 9 shows the ROC for this model.
The height of the peak near the top left corner with high AUROC proves the efficiency
of this model for this task.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

0,043441443

0,197726893

0,455499853

0,575463814
0,665719539 0,668219155

0,733411332
0,829452113

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

SVM GNB PSVM MNB LR MLP RF DL

Recall

Recall

Fig. 7. Recall of different models.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

0,082158873

0,250290913

0,471353275 0,498523063 0,504194549 0,509228188 0,512827116

0,720353006

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

SVM GNB MNB RF PSVM MLP LR DL

F1 score

F1 score

Fig. 8. F1 score of different models.

A. Alnahhas, N. Mourtada18

8. Conclusion

It is useful for competitive programming coaches to track the performance of their con-
testants, so we can benefit through machine learning techniques to build systems that
can predict the future performance of contestants and draw coaches’ attention to those
who are not on track to do well in future. In this paper, we presented the application of
six different machine learning models in this regard; five of these models are baseline
methods, and the sixth is a novel deep learning model. The results showed that it is pos-
sible to predict the future performance of contestants. Although most models achieved
acceptable results, the deep learning model outperformed all models and proved to be
effective and efficient.

To apply this results in reality, we have many options, but as informing contestants
with the prediction of their future performance can affect their real performance; this
information should be restricted to the coaches and supervisors. It can be presented as
an indicator for each contestant information page, if using an information system, or
it can be incorporated in any computer system used for observing contestant training
process.

This study is a starting point for future development of intelligent systems that can
help the process of training in competitive programming, the demographic features of
contestants should be considered in future. In addition, artificial intelligence can help in
many other ways in the training process like personalizing the materials or automatic
content generation, which should be addressed in future research.

Fig. 9. ROC curve for the deep learning model.

Predicting the Performance of Contestants in Competitive Programming ... 19

References

Al-Shabandar, R., Hussain, A., Laws, A., Keight, R., Lunn, J., & Radi, N. (2017). Machine learning approaches
to predict learning outcomes in Massive open online courses. Paper presented at the 2017 International Joint
Conference on Neural Networks (IJCNN).

Amra, I. A. A., & Maghari, A. Y. (2017). Students performance prediction using KNN and Naïve Bayesian.
Paper presented at the 2017 8th International Conference on Information Technology (ICIT).

Babić, I. Đ. (2017). Machine learning methods in predicting the student academic motivation. Croatian Opera-
tional Research Review, 443–461.

Colchester, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A survey of artificial intelligence tech-
niques employed for adaptive educational systems within e-learning platforms. Journal of Artificial Intel-
ligence and Soft Computing Research, 7(1), 47–64.

Combéfis, S., & Paques, A. (2015). Organising national olympiads in informatics: A review of selection pro-
cesses, trainings and promotion activities. Olympiads in Informatics, 9.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Hussain, S., Muhsion, Z. F., Salal, Y. K., Theodoru, P., KurtoÄ lu, F., & Hazarika, G. (2019). Prediction model

on student performance based on internal assessment using deep learning. International Journal of Emerg-
ing Technologies in Learning (iJET), 14(08), 4–22.

Jain, L. C., & Medsker, L. R. (1999). Recurrent Neural Networks: Design and Applications: CRC Press, Inc.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ performance in distance learning using

machine learning techniques. Applied Artificial Intelligence, 18(5), 411–426.
Koutina, M., & Kermanidis, K. L. (2011). Predicting postgraduate students’ performance using machine learn-

ing techniques Artificial intelligence applications and innovations (pp. 159–168): Springer.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18–22.
Ofori, F., Maina, E., & Gitonga, R. (2020). Using machine learning algorithms to predict students’ performance

and improve learning outcome: A literature based review. Journal of Information and Technology, 4(1),
33–55.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Sekeroglu, B., Dimililer, K., & Tuncal, K. (2019). Student performance prediction and classification using ma-

chine learning algorithms. Paper presented at the Proceedings of the 2019 8th International Conference on
Educational and Information Technology.

Tan, M., & Shao, P. (2015). Prediction of student dropout in e-learning program through the use of machine
learning method. International Journal of Emerging Technologies in Learning, 10(1).

Tanner, T., & Toivonen, H. (2010). Predicting and preventing student failure-using the k-nearest neighbour
method to predict student performance in an online course environment. International Journal of Learning
Technology, 5(4), 356.

Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., & Schmidt-Thieme, L. (2010). Recommender system for
predicting student performance. Procedia Computer Science, 1(2), 2811–2819.

Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academ-
ic performance of students from VLE big data using deep learning models. Computers in Human Behavior,
104, 106189.

Xu, J., Moon, K. H., & Van Der Schaar, M. (2017). A machine learning approach for tracking and predicting
student performance in degree programs. IEEE Journal of Selected Topics in Signal Processing, 11(5),
742–753.

A. Alnahhas, N. Mourtada20

A. Alnahhas is a teacher at the faculty of information technology en-
gineering, Damascus University, he holds a Ph.D. in artificial intel-
ligence, he was involved in the training and preparation of national
Olympiad in informatics since 2005, he was involved in many com-
petitive programming activities, he has been the leader of Syrian del-
egation to IOI for many years.

N. Mourtada is an information technology engineering student at the
department of artificial intelligence, faculty of information technology
engineering, Damascus University.

