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Abstract. Training is an important task in competitive programming, coaches can improve the 
training experience if they can get information about the performance of contestants. In this paper, 
we study the possibility of using machine learning techniques to build a system that is able to 
predict the future performance of a contestant by analyzing their historical rating list. This system 
learns from a dataset of contestant ratings. We propose to apply five different baseline machine 
learning techniques, then we propose a new deep learning model. We conduct an experiment us-
ing public data from the Codeforces website. We show that most techniques achieve acceptable 
results. In addition, the proposed deep learning model outperformed all baseline methods and 
achieved results that proved its efficiency in predicting the future performance of contestants. 
This paper confirms the possibility of using machine learning techniques to help in the process of 
preparing contestants in competitive programming.

Keywords: competitive programming, machine learning, artificial intelligence, programming 
training, Informatics Olympiads.

1. Introduction 

Competitive programming has become very popular in recent years. It has been attract-
ing more interest all over the world. Many important competitions in competitive pro-
gramming are organized each year, such as the International Olympiad in Informatics 
(IOI) and the International Collegiate Programming Contest (ICPC). Thousands of con-
testants are participating in competitive programming competitions that are held online 
and onsite all over the world.

Training is a key element in preparing for competitive programming, therefore, 
many institutions like organizers of national Olympiads in informatics and universities 
are interested in creating and adopting successful training plans for their contestants 
(Combéfis & Paques, 2015), and many training methods are introduced and discussed. 
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Because of the importance of the training, many coaches follow up with their contes-
tants to support their training process and provide suitable materials and tools. For 
this reason, it is important for coaches and people in charge of training to observe and 
track contestant performance. It is useful if they have an indicator if the performance 
of a contestant is decreasing, so they can help in the early stage and support the con-
testant. 

Artificial intelligence has gained more interest in both research and application in 
the recent years, it is becoming part of everyday life, many intelligent applications are 
helping people doing their work, and it has been used in modern educational systems 
to make them more adaptive for learners (Colchester, Hagras, Alghazzawi, & Aldab-
bagh, 2017), machine learning is one of the most interesting branches of artificial intel-
ligence, this field of science is interested in building intelligent systems that can learn 
by itself, usually by observing and analyzing a large amount of available data. 

As thousands of contestants are now interested in competitive programming, online 
training websites like Codeforces provide large amounts of contestant data, so it is pos-
sible to build an intelligent system to help analyze this data and support the training 
process using artificial intelligence.

In this paper, we are going to present a methodology that aims at using machine 
learning techniques in order to build a system that can predict the future performance 
of competitive programming contestants by analyzing a sequence of their historical rat-
ings. We implement some known machine learning models, then we propose a new deep 
learning model and prove its efficacy in tracking contestants’ performance by providing 
results of empirical experiments on data from Codeforces.

Although coaches can observe their contestants to ensure their performance is not 
going to decrease, there are some reasons an automatic system can support this pro-
cess:

The relation between contestant performance and their historical ratings may be ●●
not simple to be detected by humans. Complex patterns may exist in this case. 
Computer systems can detect these patterns especially using machine learning 
techniques by analyzing big amount of data, and extracting useful information by 
generalization.
The number of contestants may be large for coaches to follow up in some cases, ●●
so an automatic system can help by pointing the coaches to potential performance-
decreasing contestants, so that they can do further observations and check the 
situation.

Therefore, the proposed system can be seen as a decision support system that helps 
coaches during the training process by providing an early alarm, so that they can act in 
a timely manner. This system can help coaches of national Olympiads where number of 
contestants participating in the training process may be large.

This paper is organized as follows: section 2 provides some related works in the field 
of predicting student performance, section 3 presents a formal description of the prob-
lem we are trying to solve, section 4 introduces the baseline machine learning models 
application, section 5 proposes a new deep learning model, section 6 contains the details 
and results of the experiments, and finally section 7 concludes this paper.
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2. Related Work 

Although no researchers have tried to predict the performance of contestants in competi-
tive programming using artificial intelligence techniques; much research has focused on 
using related methodologies to predict school or university student performance as well 
as detecting students with poor educational progress. This research varied in the way 
they addressed and solved the problem. Some of them used traditional machine learning 
techniques, while others tried to use deep learning methods such as convolutional and 
recurrent neural networks.

Kotsiantis, Pierrakeas, & Pintelas (2004) proposed to use various machine learning 
algorithms to predict the performance of students in a distance learning environment, 
they used a dataset that consists of students in an informatic course. The students were 
represented by two types of attributes: demographic and performance. Five different 
machine learning techniques were applied to predict if a student would succeed or 
fail in the final exam. The results showed that the Naïve Bayes algorithm achieved 
the best results. Tanner & Toivonen (2010) tried to predict students’ final exam results 
in an online touch-typing course in which each student had to pass 12 lessons and a 
final exam. The goal of the research was to predict in early stages of the course if a 
student was going to fail the exam so that the teachers could provide more tutoring. 
The researchers suggested using the K-nearest neighbors (KNN) algorithm, a machine 
learning technique that depends on the idea that students with similar attributes tend to 
have similar exam results. The authors reported good results using KNN in predicting 
student performance. Tan & Shao (2015) presented a machine learning-based system 
that helped predict student dropout in an educational system. They argued that the per-
formance of the students is an important factor of dropout, so they suggested building 
a binary classifier that can predict if a student will drop out or graduate eventually. 
The proposed system used the grades of each student as input, and applied two differ-
ent algorithms to analyze the data: logistic regression and decision trees. The authors 
showed that both methods achieved good results. Amra & Maghari (2017) proposed a 
system that can predict secondary students’ future performance based on various attri-
butes. They compared two different machine learning algorithms: K-nearest neighbors 
and the Naïve Bayes classifier. The results they presented showed that the Naïve Bayes 
model achieved higher accuracy. Babić (2017) presented a system that aimed at pre-
dicting student academic motivation. The proposed system depended on the behavior 
of students in an online learning management system, and used three different machine 
learning methods to classify students: artificial neural networks (ANN), decision trees 
and support vector machines. The results were promising and could help educators find 
students with poor performance at early stages. Waheed et al. (2020) tried to build a 
system that can predict the academic performance of students in a virtual learning envi-
ronment based on clickstream data and assessment results. Their system used artificial 
neural networks to categorize students into two classes: success and failure. Authors 
compared the results with baseline methods: logistic regression and support vector ma-
chines, and proved that ANN outperformed them. Similarly, researchers Hussain et al. 
(2019) proposed to use artificial neural networks to predict student performance based 
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on internal assessment results. They presented the issue as a classification problem, as 
other researchers did, but they compared the results of ANN with two different classi-
fiers: The Artificial Immune Recognition System and AdaBoost. The proposed model 
used exam scores and internal assessment marks; the results showed that ANN out-
performed other methods. Sekeroglu, Dimililer, & Tuncal (2019) also used neural net-
works to predict student performance. They suggested two different neural networks, 
multilayer perceptron (MLP) and recurrent neural networks, and compared the perfor-
mance of these two networks with support vector machines. MLP proved to be best at 
classifying students and predicting performance. Koutina & Kermanidis (2011) tried 
to build a system to predict the performance of postgraduate students in order to help 
tutors detect students at risk of failing in early stages. The authors used students’ marks 
along with some demographic attributes to predict the performance and compared six 
well-known machine learning algorithms including support vector machines, Naïve 
Bayes and K-nearest neighbor. Their research led to the result that the Naive Bayes 
classifier achieved the best results.

Many other researchers were interested in this field (Al-Shabandar et al., 2017; Ofori, 
Maina, & Gitonga, 2020; Thai-Nghe, Drumond, Krohn-Grimberghe, & Schmidt-Thie-
me, 2010; Xu, Moon, & Van Der Schaar, 2017). The successful use of machine learning 
and deep learning techniques to predict the performance of students in the previous work 
is a good indicator that these methods can help predict the performance of contestants 
in competitive programming. Especially as many researchers use a similar input pattern 
which is the sequence of level rates of the contestant. We are going to apply different 
well-known traditional machine learning techniques along with a new deep learning 
model to try to achieve the research goal.

3. Formal Problem Statement 

The problem we present in this paper is about predicting the future performance of a 
contestant participating in a competitive programming training program. Each contes-
tant is assumed to have a rate that reflects their excellence level, which changes over 
time to reflect change in contestant performance. The goal is to predict if the level of the 
contestant is going to increase or decrease according to the historical ratings we already 
recorded for them. 

We can measure the performance of a contestant by the average of their level ratings, 
so if the average increases over time, then we can say that the student performance is 
getting better and vice versa.

Formally, if a contestant c has a sequence of n temporally ordered ratings R = r1, r2, 
…, rn, we define the function RC(R) as the following:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1
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The function RC denotes the difference in rating average between the first half and 
the second half of the rating sequence. Intuitively, if the function RC has a positive value, 
the contestant performance is increasing while a negative value means the performance 
is decreasing, and this is the case we are interested in, because detecting contestants who 
tend to do worse in the future will guide the coaches to provide suitable solutions.
Formally, we define the function T(R) as the following:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

     

So, the goal of the models in this paper is to predict the value of T(R) given n/2 
ratings of a contestant. As the value of T(R) is binary, the problem can be addressed as 
a binary classification, that is, each sequence of ratings belongs to either a positive or 
negative class. Binary classification problems are well-known to be solved by many ma-
chine learning and deep learning methods that can be trained using a dataset of existing 
instances, so the model can generalize and classify new instances of data. 

To solve the proposed classification problem, we will apply different types of 
baseline machine learning algorithms, then present a novel deep learning model that 
achieves good results and outperforms all other methods, as we will elaborate in the 
results section.

4. Baseline Machine Learning Algorithms 

Machine learning is used to discover data patterns and relationships between variables, 
which is helpful in the decision-making process. It is a useful tool for detecting contes-
tants whose level is going to decrease based on their rating sequence. Coaches are then 
able to help the weakest ones in a timely manner, and to promote the strongest, thereby 
improving contestants’ level. There are several well-known machine learning models 
that are usually used in classification tasks. We choose five of them to apply in our study, 
and will provide a brief description of how we apply them in this section.

4.1. Random Forest

Random forest (Liaw & Wiener, 2002) is a classification methodology widely used in 
machine learning. Random forest is a collection of decision trees (Quinlan, 1986) built 
up with some element of random choice. Each decision tree is constructed using ran-
dom features of the data. The trees are not pruned, and each leaf of each tree represents 
a class. The algorithm is trained using a bootstrap sampling method. The prediction of 
a new item is done by the voting technique, that is, the prediction of each tree is found 
according to the leaf reached, then each class is assigned a ratio of trees that voted for it. 
The random forest algorithm has been successfully used in many applications; in our 
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case we construct the forest using our dataset. We build trees from the ratings of the con-
testants, and the forest we construct contains 100 decision trees. We use Gini impurity as 
a criterion for splitting tree nodes.

4.2. Logistic Regression

Logistic regression is a binary classification model. It is considered as a baseline for 
any binary classification problem, and is a basic fundamental concept in machine learn-
ing. It describes data and estimates the relation between one dependent binary variable 
and independent variables. It is a special case of linear regression where the dependent 
binary variable is categorical in nature. Linear regression gives a continuous output, but 
logistic regression gives a constant output. Logistic regression is suitable for our goal, 
where the dependent variable is the contestant class or performance prediction, and the 
independent variables are the historical ratings of this contestant. Given the rating se-
quence R = r1, r2, …, rn of a contestant, we define a linear function Z:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

 

   

The factors 

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛  are the model parameters whose value should be found 
by the model fitting process.

We apply a logistic function L to the result of the above function to get the value in 
the range (0,1):

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅) 

 

   

The function L represents the output of the model, and the predicted class is then 
found by choosing a suitable threshold th and find the class accordingly:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅) 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ 

 

 

   

The training of the model is done by minimizing the mean squared error between the 
function L of the model and the real output of the training samples.

4.3. Artificial Neural Networks

A neural network consists of connected items called neurons, where each neuron has 
multiple inputs and a single output. There are many types of neural networks which vary 
in the way the neurons are connected to each other. Multilayer perceptron (MLP) is one 
of the famous types of neural networks. In MLP neurons are arranged in consecutive 
layers where the output of neurons of each layer constitutes the input of the next layer. 
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The first layer is the input layer, and the last layer is the output layer whose output is 
considered the output of the whole network. MLP is used widely in machine learning as 
it can learn from existing samples of data and generalize the pattern to be applied to new 
items, so it is useful in various classification and regression tasks. In our work, we use 
MLP as a binary classifier; we use a three-layer MLP. The first layer is the input layer 
which consists of neurons where each neuron corresponds to a rating from the input, the 
second layer is a hidden layer and the third layer is the output layer which consists of a 
single neuron. Fig. 1 shows the network architecture. The activation function for the first 
and second layers is the ReLU function, which is a positive linear function, whereas the 
activation function of the output layer is sigmoid:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅) 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥 

 

   

The output of the Sigmoid function is in range (0,1). To get the final class we choose 
a suitable threshold th and find the class accordingly:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅) 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ 

 

   

To train the network we use the Adam algorithm (Kingma & Ba, 2014) and cross 
entropy as a loss function. 

 

 

 

    . . . . 

    . . . . 

 

Contestant's rating list 

Output 

Fig. 1. Proposed MLP architecture.
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4.4. Naïve Bayes Classifier 

The Naive Bayes algorithm is an effective and efficient classification method in machine 
learning. A Naive Bayes classifier is a simple probabilistic classifier based on applying 
Bayes’ theorem with strong (naive) independence assumptions. Bayes’ theorem depends 
on the following relationship, given class variable y which denotes contestant perfor-
mance prediction and the dependent feature vector, which is the historical ratings of this 
contestant r1 through rn:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅) 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ 

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)  

 

  

To train our model, we use two different methods. Firstly, we train a Gaussian Naïve 
Bayes Model which implements the Gaussian Naive Bayes algorithm for classification. 
Gaussian Naïve Bayes theorem states the following relationship:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅) 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥 

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ 

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)  

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
� 

 
   

Secondly, we train a Multinomial Naïve Bayes Model which implements the naive 
Bayes algorithm for multinomial distributed data. The distribution is parametrized by 
vectors 

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1
 

 

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0 

 

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅) 
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 the total count of all ratings for class  .

4.5. Support Vector Machine 

The Support Vector Machine (SVM) is one of the most popular machine learning clas-
sifiers. It is a supervised learning algorithm used for both classification and regression. 
SVM is effective and efficient for two-class problems; it is based on finding a hyper-
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plane in n dimensional space that splits the data points. This hyperplane should have the 
maximum margin to the nearest data points, and it forms a decision boundary so that 
the separation between two classes is as wide as possible. In this paper, as our target is 
formulated as a binary classification problem, we train a Support Vector Machine Classi-
fication Model in the space with n dimensions where n is the number of historical ratings 
we consider for each contestant. We train a nonlinear support vector machine with the 
kernel trick, using the radial basis function kernel. 

As SVM output is discrete, probabilistic Support Vector Machine (PSVM) is a varia-
tion of SVM where multiple SVM is applied with multiple cross-fold operations on the 
dataset, the output of PSVM is continuous and falls in range [0,1]. In this paper we try 
out both SVM and PSVM.

5. Proposed Deep Learning Model 

Deep learning is a subclass of machine learning. In deep learning, data itself is not con-
sidered as features for classification, but higher-level features are extracted from the data 
in order to enhance the accuracy of the classification process by finding features that are 
conceptually more expressive. 

Deep neural networks are the most common implementation of deep learning, where 
some layers are added to extract semantic representation of data that is used for clas-
sification with ANN layers. 

Recurrent neural networks (RNN) (Jain & Medsker, 1999) are well-known for process-
ing sequential data, especially when the data is temporally ordered. This network consists 
of units, where each unit corresponds to an item of the processed sequence. The input of 
each unit is formed by both the output of the previous unit and the corresponding item 
from the sequence; hence, the network is able to capture the temporal relation between the 
items of the data sequence. Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 
1997) is a special type of RNN which is more suitable for processing longer sequences.

LSTM can extract latent vector representation, called embedding, from a data se-
quence; the embedding can represent data in a different (usually lower) dimension and 
with some useful semantics.

The model we propose in this paper is a deep neural network that consists of five layers: 
an embedding layer followed by two LSTM layers and finally two ANN layers. The ratings 
of the contestants are integers that reflect their levels. These integers are not sufficient to be 
used as the input to recurrent networks, so the role of the embedding layer is to find a vec-
tor representation of these ratings expanding the dimensionality of data from 1 to 64 (we 
chose to have the layer generate a vector of 64 values for each rating value). The output of 
the embedding layer is n vectors, each with 64 values. This output goes to the second layer, 
which is an LSTM layer consisting of 16 units. Each sequence item is used as an encoder 
which transforms each vector of its input from 64 values into 16 values, decreasing the 
sparsity of the embedding representation. To achieve this, the output of this unit is formed 
by the output of each unit, that is, the output is n vectors each having 64 values. The output 
is passed to the next LSTM layer which contains 16 units for each item as well; this layer 



A. Alnahhas, N. Mourtada12

generates a single vector representation of the ratings sequence, which is the output of the 
last unit of this network. This vector has 16 values. The vector representation is passed to 
a fully connected ANN network with 10 neurons, this layer is a classification layer whose 
activation function is ReLU. Its output is connected to a single neuron which constitutes 
the last layer of the network. This neuron has a Sigmoid activation function whose output 
is the probability that the input ratings sequence belongs to the positive class, that is, the 
contestant performance will decrease. Fig. 2 shows the network structure.

The network is trained by minimizing the cross-entropy loss function and the Adam 
optimizer is used to train the network. 

6. Experiment and Results

To evaluate the proposed machine learning method along with the deep learning model, 
we conduct a real experiment. This section explains the data collection, the evaluation 
metrics and the detailed results.
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LSTM layer 
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Output: Single value, probability of positive class 

Fig. 2. Structure of proposed deep learning model.
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6.1. The Dataset

To get data about competitive programming contestants, we use the data available from 
the website CodeForces.* This website is widely used for training people in competitive 
programming, moreover, it provides a rating system that allows each member to have a 
rate, which reflects the level of this member and changes after each round of competition 
conducted by the website.

Codeforces provides a public application programming interface (API)**, this API 
allows access to public data from the website and its users. To collect our dataset, firstly 
we used the ‘user.ratedList’ API method to get a list of users who have participated in 
at least one rated contest, we are interested only in active users, so we got about 21,000 
users. We could get the rating history of each user by using ‘user.rating’ API method, so 
we eliminated the users who had less than 20 ratings, leaving us with 6876 users.

We chose 10 as the length of rating sequence that can reflect the contestant perfor-
mance. We generated the dataset items where each item input is a sequence of 10 ratings 
and the output is a binary number 0 or 1 calculated by the next 10 ratings using the func-
tion T as described in section 3 of this paper. 

Many items may be generated by a single user, as every 20 consecutive ratings of the 
user can generate an item, so we used a window with a width of 20 to pass over the con-
testant ratings and generate the items. Eventually our dataset contained 233629 items.

The dataset is imbalanced, that is, the number of items getting better results in the 
future is greater than the number of contestants getting worse results. It seems this is 
natural as contestants try to get better results, but this fact makes our goal harder to 
achieve, as we are seeking contestants with worse results predicted, in order to detect 
them early on. Fig. 3 shows the class distribution in the dataset.

The dataset is split into two parts:
Training set: used to train machine learning models and is 80% of the dataset.●●
Testing set: used for evaluation and is 20% of the dataset.●●

*	http://www.codeforces.com
**	https://codeforces.com/apiHelp

 

Class distribution  

Positive Negative

Fig. 3. Class distribution in the dataset.
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6.2. Evaluation Metrics 

To evaluate the different proposed models, we are going to use well-known evaluation 
metrics in classification tasks.

6.2.1. Area Under ROC Curve (AUROC)
The receiver operating characteristics (ROC) curve is an important curve used to evaluate 
machine learning models. It represents the relation among sensitivity of the model with 
the specificity and the threshold used to choose the class. This curve reflects the perfor-
mance of the model, so the area under this curve can reflect how perfect the model is.

6.2.2. Accuracy 
The accuracy of the model is the ratio of the items that are classified correctly:
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Where TP is the number of positive items classified correctly, TN is the number of 
negative items classified correctly, and N is the number of all classified items.
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Where FN are positive items that are wrongly classified as negative. This metric is the 
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7. Results 

The six models presented in this paper are trained using the training part of the dataset, 
then the testing set is used to evaluate the performance of these models. 

To handle the data imbalance problem of the dataset, we use class weights during the 
training of the models, where each class is weighted so that the weights reflect the ratio 
of class in the training data:
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Where Wc is the weight for class c, N is the total number of items in the dataset and 

Nc is the number of items with class c in the dataset.
Fig. 4 shows the AUROC of the models: 

Linear regression (LR).●●
Random forest (RF).●●
Artificial neural network (ANN).●●
Multinomial Naïve Bayes (MNB).●●
Gaussian Naïve Bayes (GNB).●●
Probabilistic Support vector machine (PSVM).●●
Deep learning model (DL). ●●

Note that this measure cannot be calculated for support vector machines as their out-
put is discrete, unlike other models where the output is a probabilistic continuous value 
that falls in range (0,1).

We can notice that the deep learning model achieved the best value for this metric. 
MLP and RF achieved good results as well, whereas probabilistic models had poor per-
formance.  
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Fig. 4. AUROC of different models.
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Fig. 5 shows the accuracy of different models: deep learning achieved the best result 
for this metric, and the support vector machine had good accuracy as well, whereas lin-
ear regression had the poorest result.

Fig. 6 shows the precision of different models: linear regression outperformed all 
other models including the deep learning one. However, this metric does not reflect 
the overall performance of the model, because it is more important to detect most con-
testants with poor predicted performance rather than getting a high ratio of correctly 
detected contestants.

Fig. 7 shows the recall metric of the different models: the deep learning model has 
the highest recall while the random forest model also achieved good results. Recall is 
very important as it refers to the ratio of contestants with poor performance that are 
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Fig. 5. Accuracy of different models.

 

 

 

 

 

 

Class distribution  

Positive Negative

Class distribution  

Positive Negative

0,408787399 
0,497410435 

0,669434576 0,674485297 0,674990371 0,696657107 
0,754697599 

0,837242649 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy 

Accuracy

0,34092219 
0,37759229 0,399142128 0,411353803 0,417046228 

0,564546784 
0,636617704 

0,755522828 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

RF GNB MNB SVM MLP PSVM DL LR

Precision 

Precision

Fig. 6. Precision of different models.



Predicting the Performance of Contestants in Competitive Programming ... 17

positively classified. The support vector machine model tends to get very few positive 
items, so that it has a very low recall value.

Although recall is important, precision should not be bad, so because the F1 score can 
reflect both precision and recall, it is more suitable than accuracy when the data is imbal-
anced as in our case. Fig. 8 shows the F1 score for different models. We can observe that 
deep learning model outperforms all other models for F1 score for a high margin.

We can see that the deep learning model achieved good results. In fact, it gets the 
best results for most metrics, which can be explained by the capability of the LSTM 
network to encode sequential data. In addition, we used a vectorized representation of 
ratings in this model using the embedding layer. Fig. 9 shows the ROC for this model. 
The height of the peak near the top left corner with high AUROC proves the efficiency 
of this model for this task.
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8. Conclusion

It is useful for competitive programming coaches to track the performance of their con-
testants, so we can benefit through machine learning techniques to build systems that 
can predict the future performance of contestants and draw coaches’ attention to those 
who are not on track to do well in future. In this paper, we presented the application of 
six different machine learning models in this regard; five of these models are baseline 
methods, and the sixth is a novel deep learning model. The results showed that it is pos-
sible to predict the future performance of contestants. Although most models achieved 
acceptable results, the deep learning model outperformed all models and proved to be 
effective and efficient. 

To apply this results in reality, we have many options, but as informing contestants 
with the prediction of their future performance can affect their real performance; this 
information should be restricted to the coaches and supervisors. It can be presented as 
an indicator for each contestant information page, if using an information system, or 
it can be incorporated in any computer system used for observing contestant training 
process. 

This study is a starting point for future development of intelligent systems that can 
help the process of training in competitive programming, the demographic features of 
contestants should be considered in future. In addition, artificial intelligence can help in 
many other ways in the training process like personalizing the materials or automatic 
content generation, which should be addressed in future research.

Fig. 9. ROC curve for the deep learning model.
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