
Olympiads in Informatics, 2021 Vol. 15, 143–146
© 2021 IOI, Vilnius University
DOI: 10.15388/ioi.2021.12

143

Reviews of Two Programming Books

Antti LAAKSONEN
University of Helsinki, Department of Computer Science
e-mail: ahslaaks@cs.helsinki.fi

In this article I review two recent competitive programming books, published in 2020,
which have not yet been presented in the Olympiads in Informatics journal. The books
are Algorithmic Thinking by Daniel Zingaro and Competitive Programming in Python
by Christoph Dürr and Jill-Jênn Vie.

Both the books are introductory books but their approaches are different. Algorithmic
Thinking focuses on the process of learning algorithmic problem solving and uses com-
petitive programming problems as motivating challenges. Competitive Programming in
Python develops skills for programming contests and job interviews, and shows how the
Python language can be used in competitive programming.

Algorithmic Thinking:
A Problem-Based Introduction

The book discusses data structures and algorithm design techniques, and shows how
they can be used to solve problems selected from various programming contests. How-
ever, the main goal of the book is not to prepare for programming contests, but rather
to teach problem solving through motivating and challenging problems. The C pro-
gramming language is used throughout the book with the purpose of showing how data
structures and algorithms can be implemented from scratch without using libraries.

The first chapter of the book discusses the use of hashing in algorithm design. First,
the author presents a problem of classifying snowflakes and shows a quadratic algo-
rithm for solving the problem. After sending the solution to an online judge, it turns out
that the algorithm is too slow, and a better algorithm that uses hashing is developed.
This is the teaching style throughout the book: first an initial algorithm is created and
then it is improved step by step.

The following topics in the book are recursion and dynamic programming. Recur-
sion is discussed in the context of tree traversal, which is first implemented using a stack
and then using a recursive function. After that, the author shows how recursion can be
made more efficient through memoization, which leads to dynamic programming.

A. Laaksonen144

The next two chapters focus on finding shortest paths in graphs. The book first
presents a chessboard problem where an optimal sequence of moves can be found us-
ing breadth-first search. Also a more advanced problem is discussed where a special
two-state breadth-first search can be used. Dijkstra’s algorithm is first used to find the
shortest path in a graph, and then to also calculate the number of paths with minimum
length. A quadratic implementation of Dijkstra’s algorithm is presented; a better imple-
mentation using a heap is included in the appendix.

Binary search is introduced using a non-standard approach which is more relevant
in competitive programming: the first problem is to find an optimal solution using a
function that tests whether a solution is feasible. Only after that the traditional binary
search problem of locating an element in a sorted array is mentioned. Also techniques
for efficiently processing static range sum queries are discussed in connection with
binary search.

After that, the author presents two data structures that are based on a binary tree
and have some similarities: a binary heap and a segment tree. While many competitive
programmers use segment trees that are perfect binary trees, in this book the tree is built
in a different way which does not require the size of the array to be a power of two.
Finally, the last chapter of the book discusses the union-find data structure with union-
by-size and path-compression optimizations.

The strength of the book is that the process of discovering and improving algorithms
is described in detail and various different approaches are analyzed. Compared to tradi-
tional textbooks, there are also interesting topics that are not usually covered, including
the applications of binary search, calculating the number of shortest paths using Dijk-
stra’s algorithm, and processing range queries using segment trees.

The programming style of the author is clearer than that of most competitive pro-
grammers. However, some of the examples are difficult to understand due to low-level
data structure manipulation and the old-fashioned way to declare all variables at the

Author: Daniel Zingaro
Number of pages: 408
Publisher: No Starch Press (2020)

Reviews of Two Programming Books 145

beginning of a function. While the purpose of using C has been to implement things
from scratch, the qsort function is still used, probably because it happens to be in the
C standard library.

Overall, the book is clearly written, the topics are well-chosen, and the book is a
good introduction to some important competitive programming techniques. The main
audience of the book are probably beginners who do not have much background in
problem solving and are willing to use the C programming language.

Competitive Programming in Python:
128 Algorithms to Develop your Coding Skills

Authors: Christoph Dürr, Jill-Jênn Vie
Number of pages: 264
Publisher: Cambridge University Press
(2020)

The purpose of the book is to teach skills that are needed for succeeding in program-
ming contests and job interviews. The Python programming language is used in ex-
amples, which is not a typical choice in competitive programming. The reason for using
Python is that it is an easy language. However, the book also mentions that it may be
difficult to get Python solutions accepted, because Python is slower than languages like
C++ and Java.

The book begins with a short introduction to Python and basic concepts like time
complexity, data structures and algorithm design techniques. While Python provides
many useful data structures in its standard library, the book contains an alternative
binary heap implementation where keys can be changed. An interesting Python trick
mentioned in the book is the lru_cache decorator that automatically adds memoization
to a recursive function.

The next chapters present string processing algorithms, such as the KMP algorithm
and Manacher’s algorithm, and dynamic programming algorithms, such as calculating

A. Laaksonen146

the edit distance of two strings and the longest increasing subsequence. An interesting
example is a game where you have a stack of numbers and on each move you can either
remove one number or x numbers from the stack, where x is the topmost number.

After that, the book discusses the classical maximum sum subarray problem and pres-
ents the segment tree and Fenwick tree data structures that are often used for processing
range queries in competitive programming. The book also describes a data structure
called interval tree that can be used to report all intervals that contain a given point.

There are four chapters devoted to graph algorithms. Most standard techniques in
competitive programming are described, such as the DFS and BFS algorithms, finding
shortest paths, topological sorting, and constructing an Eulerian tour. The book also
discusses more advanced problems like the Chinese postman problem and the stable
marriage problem, that are not often seen in programming contests.

The following chapters present techniques for processing trees, such as efficiently
finding lowest common ancestors and the diameter of a tree, and more dynamic pro-
gramming topics, such as finding an optimal way to construct a sum of coins. Also some
geometric algorithms are discussed, including a randomized algorithm for finding two
closest points. This algorithm should be easier to implement than the traditional divide
and conquer algorithm.

After that, the book discusses algorithms for processing rectangles, including two
important competitive programming problems: finding the maximum area of an empty
rectangle in a grid and calculating the area of a union of rectangles. Finally, the book
goes through some mathematical algorithms, such as calculating binomial coefficients
and the sieve of Eratosthenes, and search algorithms like the dancing links algorithm
that is famous for solving sudokus.

The book covers many topics, and it can be seen as a mix of standard introductory
textbook topics, competitive programming topics, and more advanced theoretical top-
ics. However, since the number of topics is large and many of them are only briefly
described, it can be difficult to really understand them by reading the book. Fortunately,
the book has a good list of additional literature and references that can be used to find
more information.

Python is a good language for representing algorithms, but as mentioned in the
book, it is often not a good choice in a programming contest – if it is available at all
(for example, at the moment, Python is not available at IOI). Since most competitive
programming books use C++, this book is suitable for someone who wants to use Py-
thon instead for practicing before participating in serious contests, or just for preparing
for job interviews.

A. Laaksonen works as a university lecturer at the Department of
Computer Science of the University of Helsinki. He is one of the
organizers of the Finnish Olympiad in Informatics and has written
a book on competitive programming. He is also a developer of the
CSES online judge.

