
Olympiads in Informatics, 2015, Vol. 9, 57–73
DOI: http://dx.doi.org/10.15388/ioi.2015.06

57

Introducing tcframe: A Simple and Robust Test
Cases Generation Framework

Ashar FUADI
Indonesia Computing Olympiad
Alumni Association
e-mail: fushar@gmail.com

Abstract. Preparing test cases is a vital step in a programming contest. Creating all test cases
manually by hand is hard and error-prone, so they should be generated by programs. There have
been several attempts at creating a framework for test cases generation, that involve writing a
generator program that generates the test cases, and a validator program that validates whether
the produced test cases conform to the constraints. This paper proposes a simpler yet robust
framework, called tcframe, for generating test cases especially for programming contest pro-
blems. The proposed approach involves writing a single self-validating C++ generator program
as opposed to writing two separate programs. The framework API is designed in such a way that
the resulting generator program is easy to read and modify. Using this framework, programming
contest organizers can produce generator programs with a consistent and similar structure across
all problems.

Keywords: test case, test cases generator, test cases framework.

1. Introduction

In the past few years, competitive programming contests have been on the rise. Worl-
dwide, the number of online programming contests has been increasing. Specifically in
Indonesia, there have been more universities and high schools that have started organi-
zing programming contests. Students have many opportunities for participating in pro-
gramming contests in each school year.

In a competitive programming contest, contestants are given several problems to
solve under a predetermined time. A contestant is considered to solve a given problem if
he/she can write a program which produces correct output for each of the problem set-
ter’s secret input data (Halim and Halim, 2010). Therefore, the correctness of the secret
input data (test cases) itself is really important and the programming contest organizers
should put a lot of efforts in creating the test cases.

It is common that the people who prepare programming contest problems, including
the test cases, are the ones who have participated in some programming contests in the
past. The problem is that having experience in participating in a lot of contests usually

A. Fuadi58

does not automatically make us a good in preparing test cases. It does help a bit, as for
example, a seasoned contestant will be aware that many kinds of tricky cases should
be included in the test cases. However, we feel that it is not enough to be a good test
cases preparer.

There are at least two aspects in learning how to produce good test cases. The first
is learning how to systematically write a test cases generator program. The second
is learning how to come up with a strong set of test cases that catch as many bugs as
possible in contestants’ submissions. In this paper, we will be focusing on the former
aspect.

We realize that there are currently very few learning resources on how to systemati-
cally create test cases for programming contests. Many people simply don’t know how
or where to even start. In our experience, this lack of knowledge usually results in each
problem setter inventing their own test cases generator program.

The programs are usually not standard: some have parameters that are easy to mod-
ify; some do not; some write the test cases directly to files, some to the standard output,
and so on.

The above situation is actually dangerous: it becomes hard for a person to modify or
even understand other people’s generator programs. Imagine a possible situation where
we have to do some last-minute changes to a problem’s constraints (for example: adding
very easy subtask for beginners), but the person that wrote the generator program is not
available at the moment. Other people will have to spend a considerable amount of time
to understand and modify the program to produce the desired changes.

To eliminate the mentioned problems, we developed a test cases generator frame-
work called tcframe. We did not create tcframe at once. Instead, we begin by using an
existing library called testlib. It is a library designed for generating test cases for ICPC-
style programming contests. It has been used for many Russian programming contests
(Mirzayanov, 2008). Using testlib, we have to write a generator program that outputs
exactly one test case, and a validator program that checks whether a particular test case
conforms to the constraints.

We found that it was not quite suitable for IOI-style contests, so we created a wrap-
per around it, called tokilib (Fuadi, 2014). The wrapper essentially makes it possible to
generate multiple test cases at once, and to check the constraints based on the assigned
subtasks of each test case. We have been using it for preparing Indonesian IOI training
camps throughout 2014 and the scientific committee members have been very satisfied
with it.

Finally, we invented a quite significantly better approach that involves only writing
a single self-validating generator program. We decided to rewrite the framework from
scratch and give it a new name, tcframe. We are currently in the process of completing
the development of tcframe.

The rest of the paper is organized as follows. In Section 2 we propose a formaliza-
tion of test cases organization. Section 3 talks about the existing framework attempts
and how we incrementally refined them to finally create tcframe. Section 4 explains our
implementation of the proposed approach. In the last section, Section 5, we conclude the
paper and offer many possible future works for tcframe.

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 59

2. Test Cases Organization

In order to create a framework, we have to formalize several aspects related to the or-
ganization of test cases. In this section, we propose such formalization. This section
contains the definitions and relations between the aspects.

2.1. Test Case

We define a test case as a pair of input values and the corresponding output values. The
input must satisfy the constraints (defined later in this section). We will talk mostly
about test case inputs. Therefore, for simplicity, if not explicitly clarified, a test case will
mean a test case input.

Test cases should be hidden from contestants. However, there are some test cases that
are given in the problem statements. They are given so that the contestants will not mis-
understand the input/output formats. Such test cases are called sample test cases. In con-
trast, test cases that are not given in problem statements are called official test cases.

2.2. Input Variables

We define input variables as variables which compose test cases inputs. They are usually
declared in the input format section of a problem statement. For each value that appears
in a test case input, it must be either a constant or (part of) an input variable.

For example, consider the following problem:

Statement. Given an integer , and an array consisting of  integers, compute the prod-
uct of all integers, modulo 10007!"

Input format. The first line consists of a sentence “Dengklek has  integers", where 

is an integer. The next line contains  space-separated integers 
1
 

2
  


."

Output format. Output a single line containing a single real value: the mean, printed
with two digits after the decimal point.

In this problem, for this input:

2 Test Cases Organization
In order to create a framework, we have to formalize several aspects related to the
organization of test cases. In this section, we propose such formalization. This
section contains the definitions and relations between the aspects.

2.1 Test Case
We define a test case as a pair of input values and the corresponding output values.
The input must satisfy the constraints (defined later in this section). We will talk
mostly about test case inputs. Therefore, for simplicity, if not explicitly clarified,
a test case will mean a test case input.

Test cases should be hidden from contestants. However, there are some test
cases that are given in the problem statements. They are given so that the contes-
tants will not misunderstand the input/output formats. Such test cases are called
sample test cases. In contrast, test cases that are not given in problem statements
are called official test cases.

2.2 Input Variables
We define input variables as variables which compose test cases inputs. They are
usually declared in the input format section of a problem statement. For each
value that appears in a test case input, it must be either a constant or (part of)
an input variable.

For example, consider the following problem:
Statement. Given an integer N , and an array consisting of N integers, com-

pute the product of all integers, modulo 10007!"
Input format. The first line consists of a sentence "Dengklek has N inte-

gers", where N is an integer. The next line contains N space-separated integers
A1, A2, ..., AN ."

Output format. Output a single line containing a single real value: the mean,
printed with two digits after the decimal point.

In this problem, for this input:

Dengklek has 3 i n t e g e r s
10 20 30

• The strings "Dengklek", "has", and "integers" are constants. If we consider
whitespaces, they are constants as well.

• The integer 3 is N .

• The integer 10 is A1.

• The integer 20 is A2.

• The integer 30 is A3.

3

The strings “Dengklek”, “has”, and “integers” are constants. If we consider ●●
whitespaces, they are constants as well.
The integer ●● 3 is .
The integer ●● 10 is 

1
.

The integer ●● 20 is 
2
.

The integer ●● 30 is 
3
.

A. Fuadi60

2.3. Constraints

We define a constraint as a boolean predicate which limits the possible values of the
input variables in test case inputs. The value of the predicate must be completely deter-
mined by the values of input variables only. For example, 1 ≤  ≤ 100 is a valid con-
straint for the previous problem.

2.4. Subtasks and Test Groups

We define a subtask as a set of one or more constraints. Subtasks are numbered with
consecutive integers starting from 1. A test case is said to satisfy a subtask if it satisfies
all constraints in the subtask.

One purpose of introducing subtasks in a problem is to create a nice score distribu-
tion (van der Vegt, 2009). Since 2010, all IOI problems have used subtasks in their
constraints. Besides having a good distribution, the scores are also predictable since the
points allotted to each subtask are usually fixed.

Let’s consider a typical problem, which has only  as an input variable, and has
three subtasks as follow:

 1.	 1 ≤  ≤ 100

 2.	 1 ≤  ≤ 1000

 3.	 1 ≤  ≤ 10000

We must assign a set of test cases to each subtask. The most common way is to
consider each subtask independently. This means that the test cases generation for each
subtask is independent to the other subtasks. In this way, it is quite unlikely that two
subtasks have a test case with exactly the same content.

However, this has a serious problem. If each subtask is considered independently, then
theoretically it is possible that a submission solves subtask 2, but not subtask 1. This can
happen if subtask 1 has a tricky case that is not present in subtask 2. However, this situa-
tion does not make sense: if a solution fails a test case having 1 ≤  ≤ 100, then logically
we should not let it pass subtask 2, since that test case satisfy 1 ≤  ≤ 1000 as well.

Our proposed solution to the above problem is as follows. Instead of each subtask
having a set of independent test cases, we assign each test case to a set of subtasks. A
submission is then considered to solve a subtask if it solves all test cases assigned to it.
For convenience, we define a test group as a set of test cases, numbered with consecutive
integers starting from 1. If two test cases are assigned to the same set of subtasks, then
they are in the same test group.

Formally, we propose the following assignment rules:
Each test case is assigned to a set of subtasks.●●
For each test group, all official test cases in it have the same set of subtasks.●●
If a test case is assigned to a set of subtasks ●● , then:

The test case must satisfy all subtasks ●●  ∈ .
The test case must not satisfy any of the subtasks ●●  ∉ .

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 61

In the proposed rules, instead of generating independent set of test cases for each
subtask, we organize the test cases generation as follows.

Test group 1: generate test cases that satisfy ●● 1 ≤  ≤ 100. Assign them to subtasks
f1 2 3g.
Test group 2: generate test cases that satisfy ●● 101 ≤  ≤ 1000. Assign them to sub-
tasks f2 3g.
Test group 3: generate test cases that satisfy ●● 1001 ≤  ≤ 10000. Assign them to
subtasks f3g.

Let’s consider another problem, this time with two input variables  and .
 1.	  = 1; 1 ≤  ≤ 100

 2.	 1 ≤  ≤ 100;  = 1
 3.	 1 ≤ K,  ≤ 100

Generate the test cases as follow:
Test group 1: consists of only one test case ●●  =  = 1. Assign it to subtasks f1

2 3g.
Test group 2: generate test cases that satisfy ●●  = 1; 2 ≤  ≤ 100. Assign them to
subtasks f1 3g.
Test group 3: generate test cases that satisfy ●● 2 ≤  ≤ 100;  = 1. Assign them to
subtasks f2 3g.
Test group 4: generate test cases that satisfy ●● 2 ≤  ≤ 100. Assign them to sub-
tasks f3g.

Perhaps it will be understood better by drawing the Venn diagrams of the subtasks,
as depicted in Fig. 1. Our advice is to have a test group for each closed region in the
resulting Venn diagram.

Note that the above solution still depends on the grader system used for the contest.
If the grader system only support independent set of test cases for each subtask, then a
possible workaround is to have multiple copies of a test case for each of the assigned
subtasks. This will, however, result in a test case being evaluated multiple times. In the

Fig. 1. Example test groups Venn diagram.

A. Fuadi62

current implementation of grader mentioned in (Fernando and Liem, 2014), the above
idea has been enforced. Each test case will never be evaluated more than once. Each
subtask result is then deduced from the test case evaluation results.

Having formalized the test cases generation, we are now ready to discuss how to
design a framework that supports it.

3. Test Cases Generation Framework Designs

There have been several previous efforts related to test cases generation that we are
aware of. For each of them, we will explain the key designs, the problems that arise, and
proposed solutions. Eventually, the proposed solutions are then used as foundations for
writing the tcframe framework.

For each problem, there should be a set of test cases, a generator program that gener-
ates the test cases (if any), and a validator program that validates the correctness of the
test cases, as proposed in (Diks et al., 2008). All previous works require us to write a
generator and a validator program. tcframe takes a little step further and only requires us
to write a self-validating generator program.

When explaining a framework, we will assume that an official solution to the prob-
lem we are currently considering is already available. This means that our job is only
generating test cases (not writing the solution).

3.1. testlib

testlib is a library created by Mike Mirzayanov et al. To generate test cases using the
testlib library, we need to write two programs: a generator program, which outputs a test
case input, and a validator program, which validates the produced input.
Generator program. This program, when run, will produce a single test case input file.
To have some variations in the values of the input, the generator program usually contains
some randomizations. The randomization parameters and seed can be passed as the pro-
gram’s command line arguments.

testlib provides a bunch of functions related to randomization that we can use.
For example, generating weighted random values, generating random strings based

on a regex pattern, etc.
For example, here is a sample pseudocode of a generator program using testlib.

i n t maxN = the program ’ s 1 s t argument

i n t N = randomize between 1 and maxN
p r i n t l n N
f o r 0 <= i < N:

i n t a = randomize between 0 and 1000
p r i n t l n a

Validator program. After a test case input file has been produced by the
generator, we need to validate whether the values in the input file conform to
the constraints. This is done by the validator program. It takes the input file as
standard input and validates the values using the provided functions.

For example, here is a sample pseudocode of a validator program using testlib.

read an i n t e g e r N and v e r i f y that 1 <= N <= 100000
f o r 0 <= i < N:

read an i n t e g e r a , and v e r i f y that 0 <= a <= 1000
i f i + 1 < N:

read a space
e l s e :

read a newl ine
v e r i f y that i t i s EOF

We found that testlib is missing several features. First, the generator program
only produces a single input file in a single execution. So, to produce test data
that has many test cases, we have to write a script and call the generator program
several times using different arguments. Second, the validator program does not
support subtasks: it is not possible to validate a test case on a specific subtask.
These features are missing because testlib was designed for ICPC-style problems.

Fig. 2 shows the diagram of steps for generating test cases using testlib.

Figure 2: testlib generation diagram

3.2 tokilib
Recall that in summary, testlib does not support generating multiple test cases at
once for problems with subtasks. To fill this missing feature, we wrote a wrap-

7

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 63

Validator program. After a test case input file has been produced by the generator, we
need to validate whether the values in the input file conform to the constraints. This is
done by the validator program. It takes the input file as standard input and validates the
values using the provided functions.

For example, here is a sample pseudocode of a validator program using testlib.

i n t maxN = the program ’ s 1 s t argument

i n t N = randomize between 1 and maxN
p r i n t l n N
f o r 0 <= i < N:

i n t a = randomize between 0 and 1000
p r i n t l n a

Validator program. After a test case input file has been produced by the
generator, we need to validate whether the values in the input file conform to
the constraints. This is done by the validator program. It takes the input file as
standard input and validates the values using the provided functions.

For example, here is a sample pseudocode of a validator program using testlib.

read an i n t e g e r N and v e r i f y that 1 <= N <= 100000
f o r 0 <= i < N:

read an i n t e g e r a , and v e r i f y that 0 <= a <= 1000
i f i + 1 < N:

read a space
e l s e :

read a newl ine
v e r i f y that i t i s EOF

We found that testlib is missing several features. First, the generator program
only produces a single input file in a single execution. So, to produce test data
that has many test cases, we have to write a script and call the generator program
several times using different arguments. Second, the validator program does not
support subtasks: it is not possible to validate a test case on a specific subtask.
These features are missing because testlib was designed for ICPC-style problems.

Fig. 2 shows the diagram of steps for generating test cases using testlib.

Figure 2: testlib generation diagram

3.2 tokilib
Recall that in summary, testlib does not support generating multiple test cases at
once for problems with subtasks. To fill this missing feature, we wrote a wrap-

7

We found that testlib is missing several features. First, the generator program only
produces a single input file in a single execution. So, to produce test data that has many
test cases, we have to write a script and call the generator program several times using
different arguments. Second, the validator program does not support subtasks: it is not
possible to validate a test case on a specific subtask.

These features are missing because testlib was designed for ICPC-style problems.
Fig. 2 shows the diagram of steps for generating test cases using testlib.

3.2. tokilib

Recall that in summary, testlib does not support generating multiple test cases at once for
problems with subtasks. To fill this missing feature, we wrote a wrapper around testlib,
called tokilib. We call it wrapper because it is using testlib’s generation and validation
functions.

Fig. 2. testlib generation diagram.

A. Fuadi64

Improved generator program. A generator program now consists of several functions,
each of which defines a test group (called batch in tokilib). Each test group can be as-
signed a set of subtasks. Then, test case definitions follow, in the format as described in
the next section below.

Component-based test cases. We introduce the concept of components in a test case as
follows. Suppose we have a labeled tree data structure of  nodes as the test case. We
can break down the structure into two independent components: a tree consisting of 

nodes, and a list of  labels for the nodes. This way, we can generate each component
independently, and then mix them to produce strong test cases.

For example, for the first component, we can have the following two variations: a bi-
nary tree and a random tree. For the second component, we can also have two variations:
a list consisting of equal labels, and a list consisting of random labels.

For each component, we choose a suitable representation, which might be different
from the input format section. For example, the tree can be represented as follows. Con-
sider the tree as a rooted tree, with node 1 as the root. The representation is a vector of
 elements. The i-th (one-based) element is the number of the parent of node i, or 0 (no
parent) if i = 1 (Manev et al., 2010).

Each component is declared as a global variable in the desired representation.
Then, a test case definition can be defined as a sequence of statements that assign the

correct values to the components. Finally, we must implement a print() function, which
prints the components according to the input format. Here is a pseudocode of a sample
generator program in tokilib:

per around testlib, called tokilib. We call it wrapper because it is using testlib’s
generation and validation functions.

Improved generator program. A generator program now consists of several
functions, each of which defines a test group (called batch in tokilib). Each test
group can be assigned a set of subtasks. Then, test case definitions follow, in the
format as described in the next section below.

Component-based test cases. We introduce the concept of components in
a test case as follows. Suppose we have a labeled tree data structure of N nodes as
the test case. We can break down the structure into two independent components:
a tree consisting of N nodes, and a list of N labels for the nodes. This way, we can
generate each component independently, and then mix them to produce strong
test cases.

For example, for the first component, we can have the following two variations:
a binary tree and a random tree. For the second component, we can also have two
variations: a list consisting of equal labels, and a list consisting of random labels.

For each component, we choose a suitable representation, which might be dif-
ferent from the input format section. For example, the tree can be represented as
follows. Consider the tree as a rooted tree, with node 1 as the root. The repre-
sentation is a vector of N elements. The i-th (one-based) element is the number
of the parent of node i, or 0 (no parent) if i=1 (Manev et al., 2010).

Each component is declared as a global variable in the desired representation.
Then, a test case definition can be defined as a sequence of statements that as-
sign the correct values to the components. Finally, we must implement a print()
function, which prints the components according to the input format. Here is a
pseudocode of a sample generator program in tokilib:
va r i a b l e s :

i n t N
in t [] parents

p r i n t () :
p r i n t l n (N)
f o r 0 <= i < N:

i f parents [i] != 0 :
p r i n t l n (i + " " + parents [i])

batch1 () :
ass ignToSubtasks ({1 , 2})
beginTC () ; N = 7 ; binaryTree () ; equa lLabe l s () ; endTC()
beginTC () ; N = 10 ; randomTree () ; equa lLabe l s () ; endTC()
beginTC () ; N = 100 ; binaryTree () ; randomLabels () ; endTC()
beginTC () ; N = 100 ; randomTree () ; randomLabels () ; endTC()

batch2 () :
ass ignToSubtasks ({2})
beginTC () ; N = 500 ; randomTree () ; randomLabels () ; endTC()
beginTC () ; N = 1000 ; randomTree () ; randomLabels () ; endTC()

Improved validator program. A validator program in tokilib combines the
schemes used in testlib’s validator and tokilib’s generator. It consists of a list of
subtask definitions. A subtask definition consists of a list of constraint definitions,
each of which is an assignment to a constraint boundary variable. A constraint
boundary variable is just a variable that holds the varying values of a constraint
across subtasks, for example, min/max possible value of N . It is declared as a

8

Improved validator program. A validator program in tokilib combines the schemes
used in testlib’s validator and tokilib’s generator. It consists of a list of subtask defini-
tions. A subtask definition consists of a list of constraint definitions, each of which is an
assignment to a constraint boundary variable. A constraint boundary variable is just a

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 65

variable that holds the varying values of a constraint across subtasks, for example, min/
max possible value of . It is declared as a global variable. Finally, we must implement
a validate() function, which validates a test case according to the assigned subtasks. Here
is a pseudocode of a sample validator program in tokilib:
global variable. Finally, we must implement a validate() function, which validates
a test case according to the assigned subtasks. Here is a pseudocode of a sample
validator program in tokilib:

va r i a b l e s :
i n t maxN

va l i d a t e () :
read N and v e r i f y that 1 <= N <= maxN
read t r e e edges
v e r i f y that the edges form a t r e e

main () :
beginSubtask () ; maxN = 100 ; endSubtask ()
beginSubtask () ; maxN = 1000 ; endSubtask ()

Improved usage. testlib requires us to manually call the validator program
on the generated input file, and then run the solution to produce an output file.
This is not the case in tokilib: after the generator program produces an input
file, the validator program will be automatically run against it. If it passes, the
solution will be automatically run against it to produce an output file.

Fig. 3 shows the diagram of steps for generating test cases using tokilib.

Figure 3: tokilib generation diagram

3.3 tcframe
After using tokilib for generating test cases for many problems, we noticed that the
part of validator that parses and checks whether the values are printed according
to the input format looks similar and repetitive across all problems. We then
wondered whether checking the input format in the validator can be eliminated.

Let’s begin with the reason why input format validation has been necessary
in the first place. It has been because it is us humans who type the actual code
for printing the values, and humans are error-prone. In addition, there are many
ways to print the input variable values, because we may be manipulating the
test case components using a different representation that defined in the input

9

Improved usage. testlib requires us to manually call the validator program on the gener-
ated input file, and then run the solution to produce an output file.
This is not the case in tokilib: after the generator program produces an input file, the
validator program will be automatically run against it. If it passes, the solution will be
automatically run against it to produce an output file.

Fig. 3 shows the diagram of steps for generating test cases using tokilib.

3.3. tcframe

After using tokilib for generating test cases for many problems, we noticed that the part
of validator that parses and checks whether the values are printed according to the in-
put format looks similar and repetitive across all problems. We then wondered whether
checking the input format in the validator can be eliminated.

Fig. 3. tokilib generation diagram.

A. Fuadi66

Let’s begin with the reason why input format validation has been necessary in the
first place. It has been because it is us humans who type the actual code for printing the
values, and humans are error-prone. In addition, there are many ways to print the input
variable values, because we may be manipulating the test case components using a dif-
ferent representation that defined in the input format section. For example, suppose the
test case consists of an undirected graph.

The input format section might state that the graph is given as a list of edges, but we
might be manipulating the graph using an adjacency list instead. One implementation
for printing the edges is to print them while traversing the graph using, for example,
breadth-first search. Then, if we make mistakes in the traversal code, we might print
duplicate edges, or we might miss some edges.

So, we had an idea. If we hand over the input variables printing part to the frame-
work, then the input variables parsing and input format validation should not be neces-
sary anymore. To make this possible, we need to formalize how to declare the input vari-
ables and specify the input format. Remember that this has not been formalized before:
we are free to decompose the structure into any components we want.

We propose the following formalization:
The framework only works on “primitive” input variables. For example: scalars, ●●
vectors, and matrices of basic types (integers, floating-points, strings). Note that
these are the most commonly used structures in input format sections.
The framework provides an API to arrange the input variables in certain formats. ●●
For example, space-separated scalars in a single line, space-separated elements of a
vector in a single line, multiple lines each containing an element of a vector, etc.

In this way, we only need to specify the input variables arrangement, and to assign
values to the input variables for each test case. Then, the framework will take care of
printing the values according to the specified input format. Assuming the framework is
always correct, we now don’t need to parse the variables and validate the input format in
the validator program anymore.

Here is the pseudocode of the desired scheme:

format section. For example, suppose the test case consists of an undirected graph.
The input format section might state that the graph is given as a list of edges,
but we might be manipulating the graph using an adjacency list instead. One
implementation for printing the edges is to print them while traversing the graph
using, for example, breadth-first search. Then, if we make mistakes in the traversal
code, we might print duplicate edges, or we might miss some edges.

So, we had an idea. If we hand over the input variables printing part to the
framework, then the input variables parsing and input format validation should
not be necessary anymore. To make this possible, we need to formalize how to
declare the input variables and specify the input format. Remember that this
has not been formalized before: we are free to decompose the structure into any
components we want.

We propose the following formalization:

• The framework only works on "primitive" input variables. For example:
scalars, vectors, and matrices of basic types (integers, floating-points, strings).
Note that these are the most commonly used structures in input format sec-
tions.

• The framework provides an API to arrange the input variables in certain for-
mats. For example, space-separated scalars in a single line, space-separated
elements of a vector in a single line, multiple lines each containing an element
of a vector, etc.

In this way, we only need to specify the input variables arrangement, and to
assign values to the input variables for each test case. Then, the framework will
take care of printing the values according to the specified input format. Assuming
the framework is always correct, we now don’t need to parse the variables and
validate the input format in the validator program anymore.

Here is the pseudocode of the desired scheme:

i nputVar i ab l e s :
i n t N
in t [] u , v

inputFormat () :
s i n g l eL i n e (N)
mu l t i p l eL ine s (N−1, {u [i] , v [i] })

The interesting thing about this scheme is that the pseudocode is really similar
to the input format section in the problem statement, which is nice because it will
be easy to verify.

Now, the only thing left in validator program is constraints checking. Previ-
ously, this is done after we parse the input variables from the input file produced
by the generator. Since the parsing part is now eliminated, we can do the check
directly on the input variables declared in the generator, as a list of subtask def-
initions, each of which consists of a list of constraint definitions. As the input
format validation is already similar to the corresponding section in the problem
statement, it would be nice if this part can also be made similar to constraints/-
subtasks section in the problem statement.

Here is the pseudocode of the proposed scheme of this part:

10

The interesting thing about this scheme is that the pseudocode is really similar to the in-
put format section in the problem statement, which is nice because it will be easy to verify.

Now, the only thing left in validator program is constraints checking. Previously, this
is done after we parse the input variables from the input file produced by the genera-
tor. Since the parsing part is now eliminated, we can do the check directly on the input
variables declared in the generator, as a list of subtask definitions, each of which consists
of a list of constraint definitions. As the input format validation is already similar to the

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 67

corresponding section in the problem statement, it would be nice if this part can also be
made similar to constraints/subtasks section in the problem statement.

Here is the pseudocode of the proposed scheme of this part:

subtask1 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 100})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

subtask2 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 1000})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

Therefore, the validator program is now eliminated completely. As the gener-
ator program now contains both test cases generation and validations, we call it
with another name: runner program.

Finally, the test groups/test cases definitions are similar to those in tokilib,
except that we also make the syntax more declarative.

testGroup1 () :
ass ignToSubtasks ({1 , 2})
dec lareTestCase ({N = 7 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 100 ; randomTree () ; randomLabels () })

testGroup2 () :
ass ignToSubtasks ({2})
dec lareTestCase ({N = 200 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 1000 ; randomTree () ; randomLabels () })

In summary, Fig. 4 depicts the flow of test cases generation using the mentioned
idea so far.

Figure 4: tcframe generation diagram

We felt that this change is very significant compared to tokilib, so we decided
to consider this as a brand new framework and give it another name, tcframe.

4 Implementation Details
In the previous section, we described motivations and ideas behind tcframe. This
section will explain how tcframe is implemented in more detail.

11

Therefore, the validator program is now eliminated completely. As the generator
program now contains both test cases generation and validations, we call it with another
name: runner program.

Finally, the test groups/test cases definitions are similar to those in tokilib, except
that we also make the syntax more declarative.

subtask1 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 100})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

subtask2 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 1000})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

Therefore, the validator program is now eliminated completely. As the gener-
ator program now contains both test cases generation and validations, we call it
with another name: runner program.

Finally, the test groups/test cases definitions are similar to those in tokilib,
except that we also make the syntax more declarative.

testGroup1 () :
ass ignToSubtasks ({1 , 2})
dec lareTestCase ({N = 7 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 100 ; randomTree () ; randomLabels () })

testGroup2 () :
ass ignToSubtasks ({2})
dec lareTestCase ({N = 200 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 1000 ; randomTree () ; randomLabels () })

In summary, Fig. 4 depicts the flow of test cases generation using the mentioned
idea so far.

Figure 4: tcframe generation diagram

We felt that this change is very significant compared to tokilib, so we decided
to consider this as a brand new framework and give it another name, tcframe.

4 Implementation Details
In the previous section, we described motivations and ideas behind tcframe. This
section will explain how tcframe is implemented in more detail.

11

In summary, Fig. 4 depicts the flow of test cases generation using the mentioned idea
so far.

We felt that this change is very significant compared to tokilib, so we decided to
consider this as a brand new framework and give it another name, tcframe.

Fig. 4. tcframe generation diagram.

A. Fuadi68

4. Implementation Details

In the previous section, we described motivations and ideas behind tcframe. This section
will explain how tcframe is implemented in more detail.

The code is hosted on GitHub (https://github.com/ia-toki/tcframe/).
At the time of writing, it is on version 0.3.0 and it is not ready for public use.

We chose to write tcframe in C++. One of the main reasons is because it is a popular
language used by competitive programmers. In addition, C++ has preprocessor macros,
which will be used extensively for producing concise but powerful code.

Let’s begin with some philosophies that we want to achieve in the implementation
of tcframe.

It should be possible to write only a single runner program as opposed to writing ●●
two programs: generator and validator programs.
The resulting runner program code should be concise, declarative, and should re-●●
semble the problem statement.
The overall syntax should be well structured so that it is easy to extend in the fu-●●
ture.

Fig. 5 depicts a proposed high-level class diagram to meet the above requirements.
Let’s discuss each part of the class diagram in more details. Note that tcframe is not

final yet so some part definitions may change in the future.

4.1. Specification Classes: BaseProblem and BaseGenerator

Recall that testlib and tokilib both require writing two separate programs: generator and
validator. This scheme has an advantage that the validator cannot access any user-defined
functions in the generator. This is important because to test a system (the generator), we

Fig. 5. tcframe class diagram.

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 69

should only use things outside the system. However, to implement tcframe, this cannot
be the case: both the generation and validation steps need to access the input variables.
However, we also want to prevent the validation step from using any user-defined func-
tions used in the generation step.

To satisfy both seemingly contradicting requirements, we restructure parts of the
generator and validator programs into two classes: input variables, input formats, and
subtask definitions go into problem specification class, while test cases definitions go
into generator specification class. Both classes then go to just a single program. The
definitions are implemented as virtual (abstract) methods in these classes, which must be
overridden in concrete classes. By convention, let’s name them Problem and Generator.
Any user-defined functions then should be declared private in Generator.

As mentioned above, the input variables go into the Problem class, as member vari-
ables. The Generator class then must be given access to the member variables.

We notice that there are two ways to implement this requirement: by composition
and by inheritance.

By composition. The Generator will hold an object of type Problem, whose member vari-
ables are declared public. This is nice, but now whenever we want to assign values to input
variables in the Generator class, we must type the object name (e.g., problem.N = 100).
We feel that this way is not concise and pleasant.

By inheritance. To avoid writing an object name before each input variable, we chose to
use inheritance. The input variables are to be declared as protected member variables in
Problem. Then, we make BaseGenerator inherit Problem. BaseGenerator now can access
the input variables. Generator is also able to access them as well, since it inherits Base-
Generator.

Finally, to make the above scheme work for any Problem class, we use templates in
the following way. Here is the declaration of BaseGenerator:

4.1 Specification classes: BaseProblem and BaseGenera-
tor

Recall that testlib and tokilib both require writing two separate programs:
generator and validator. This scheme has an advantage that the validator
cannot access any user-defined functions in the generator. This is important
because to test a system (the generator), we should only use things outside
the system. However, to implement tcframe, this cannot be the case: both the
generation and validation steps need to access the input variables. However, we
also want to prevent the validation step from using any user-defined functions
used in the generation step.

To satisfy both seemingly contradicting requirements, we restructure parts
of the generator and validator programs into two classes: input variables, input
formats, and subtask definitions go into problem specification class, while test
cases definitions go into generator specification class. Both classes then go to
just a single program. The definitions are implemented as virtual (abstract)
methods in these classes, which must be overridden in concrete classes. By con-
vention, let’s name them Problem and Generator. Any user-defined functions
then should be declared private in Generator.

As mentioned above, the input variables go into the Problem class, as mem-
ber variables. The Generator class then must be given access to the member
variables. We notice that there are two ways to implement this requirement:
by composition and by inheritance.

By composition. The Generator will hold an object of type Problem,
whose member variables are declared public. This is nice, but now whenever
we want to assign values to input variables in the Generator class, we must
type the object name (e.g., problem.N = 100). We feel that this way is not
concise and pleasant.

By inheritance. To avoid writing an object name before each input vari-
able, we chose to use inheritance. The input variables are to be declared as
protected member variables in Problem. Then, we make BaseGenerator inherit
Problem. BaseGenerator now can access the input variables. Generator is also
able to access them as well, since it inherits BaseGenerator.

Finally, to make the above scheme work for any Problem class, we use
templates in the following way. Here is the declaration of BaseGenerator:

template<typename TProblem>
class BaseGenerator : public TProblem ;

And here is the declaration of Problem and Generator:

class Problem : public BaseProblem ;
class Generator : public BaseGenerator<Problem>;

4.2 Definitions: input format, constraints/subtasks, test
cases/test groups

The definitions are realized as virtual member functions in the base specifica-
tion classes. We must implement those functions in the concrete specification
classes, and put the definition items inside them by making API calls. They

13

And here is the declaration of Problem and Generator:

system (the generator), we should only use things outside the system. However,
to implement tcframe, this cannot be the case: both the generation and validation
steps need to access the input variables. However, we also want to prevent the
validation step from using any user-defined functions used in the generation step.

To satisfy both seemingly contradicting requirements, we restructure parts
of the generator and validator programs into two classes: input variables, input
formats, and subtask definitions go into problem specification class, while test
cases definitions go into generator specification class. Both classes then go to just
a single program. The definitions are implemented as virtual (abstract) methods
in these classes, which must be overridden in concrete classes. By convention, let’s
name them Problem and Generator. Any user-defined functions then should be
declared private in Generator.

As mentioned above, the input variables go into the Problem class, as member
variables. The Generator class then must be given access to the member variables.
We notice that there are two ways to implement this requirement: by composition
and by inheritance.

By composition. The Generator will hold an object of type Problem, whose
member variables are declared public. This is nice, but now whenever we want to
assign values to input variables in the Generator class, we must type the object
name (e.g., problem.N = 100). We feel that this way is not concise and pleasant.

By inheritance. To avoid writing an object name before each input variable,
we chose to use inheritance. The input variables are to be declared as protected
member variables in Problem. Then, we make BaseGenerator inherit Problem.
BaseGenerator now can access the input variables. Generator is also able to access
them as well, since it inherits BaseGenerator.

Finally, to make the above scheme work for any Problem class, we use templates
in the following way. Here is the declaration of BaseGenerator:
template<typename TProblem>
class BaseGenerator : protected TProblem ;

And here is the declaration of Problem and Generator:
class Problem : public BaseProblem ;
class Generator : public BaseGenerator<Problem>;

4.2 Definitions: input format, constraints/subtasks, test cas-
es/test groups

The definitions are realized as virtual member functions in the base specification
classes. We must implement those functions in the concrete specification classes,
and put the definition items inside them by making API calls. They should have
something in common: if any step in the whole generation process fails, then the
definition item that causes the failure should be presented to the users so that
the users can fix it. For example, if an input variable value does not satisfy a
constraint, something like "Error: constraint 1 ≤ N ≤ 100 not satisfied" should be
output.

To support the above requirement, the definition items will be implemented
using C++ macros, which supports the stringization trick of the input parameters.
The next section will show the planned syntax for the macros.

13

4.2. Definitions: Input Format, Constraints/Subtasks, Test Cases/Test Groups

The definitions are realized as virtual member functions in the base specification classes.
We must implement those functions in the concrete specification classes, and put the def-
inition items inside them by making API calls. They should have something in common:
if any step in the whole generation process fails, then the definition item that causes
the failure should be presented to the users so that the users can fix it. For example, if

A. Fuadi70

an input variable value does not satisfy a constraint, something like “Error: constraint
1 ≤  ≤ 100 not satisfied" should be output.

To support the above requirement, the definition items will be implemented using
C++ macros, which supports the stringization trick of the input parameters.
The next section will show the planned syntax for the macros.

Input format. It consists of one or more input segments, which will be printed one
after another. Currently, the following input segment types are supported: space-sepa-
rated scalars/vectors in a single line, lines each containing an element of vectors, and
grid. For example, the definition of a line segment (the first type) is made by calling
this macro:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

which then expands to something like:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

The above call defines a line that consists of input variable , followed by a space,
followed by input variable .
Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ... SubtaskX()
for a finite number  (currently it is set to 10). To define a subtask, implement any of the
mentioned methods in the Problem class. Inside the method, we can define one or more
constraints, by calling this macro:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

which then expands to something like:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

In tokilib, we implement a constraint definition as an ordinary C++ statement.
In tcframe, we will use a new feature in C++11: lambda closure, for each constraint.

This has several advantages. For example, each constraint is now independent from any
other and they can be called in any order. It also makes the framework more extensible;
for example, it becomes possible to write a plugin based on tcframe that only prints all
constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1() ... Tes-
tGroupX() for a finite number  (similar to subtasks, currently it is just set to 10). To de-
fine a test group, implement any of the mentioned methods in the Generator class. Inside
the method, we can define one or more test cases, by calling this macro:

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 71

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

which then expands to something like:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

Similar to constraint definitions, test case definitions also make use of lambda clo-
sures. Note that we choose comma operators rather than semicolons for separating input
variable assignments. This way, the test case definition looks more “declarative”: it con-
sists a list of assignments to the input variables, rather than statements.

Finally, we also want to be able to use component-based in tcframe. This can be
achieved by declaring the component variables in the Generator class, use them in test
case definitions, and then convert them to the actual input variables in the Problem class
before the end of each test case definition.

5. Conclusion

We have presented the ideas behind creating tcframe, and how we are currently imple-
menting it. We also suggested a formalization on test cases organization.

We hope that tcframe will allow more people to be able to create good test cases
systematically. For programming contests with multiple authors, we hope that tcframe
allows the authors to be able to work together creating test cases more collabora-
tively.

6. Future Works

We are aware of several possible other improvements and new features that can be im-
plemented in tcframe.

6.1. Output Validation

testlib, tokilib, and tcframe all share a problem: the produced test case outputs, obtained
by running the solution against the generated test case inputs, are not validated. This is
actually very dangerous because the solution might have some mistakes and print the
output not according the output format, or have some invalid values.

We can validate the outputs in a similar way as we do to the inputs:
Declare ●● output variables. For example, in a single-integer answer, we can call it
.

A. Fuadi72

Declare ●● output format. The framework can then use this format for parsing the pro-
duced outputs, validating the format, and storing the values to output variables.
Declare ●● output constraints. For example, if a problem requires the answer modulo
10007, we have an output constraint 0 ≤  ≤ 10006. The framework can then
use it for validating the output variables.

6.2. Answer Checker

For problems with several possible solutions, we need a checker that compares the
judge’s and contestant’s answers. Our class structures make it easy to add this function-
ality. We can build a BaseChecker class on top of Problem class, similar to BaseGenera-
tor. The check can be then somehow implemented as follows.

5 Conclusion
We have presented the ideas behind creating tcframe, and how we are currently
implementing it. We also suggested a formalization on test cases organization.
We hope that tcframe will allow more people to be able to create good test cases
systematically. For programming contests with multiple authors, we hope that
tcframe allows the authors to be able to work together creating test cases more
collaboratively.

6 Future Works
We are aware of several possible other improvements and new features that can
be implemented in tcframe.

6.1 Output validation
testlib, tokilib, and tcframe all share a problem: the produced test case outputs,
obtained by running the solution against the generated test case inputs, are not
validated. This is actually very dangerous because the solution might have some
mistakes and print the output not according the output format, or have some
invalid values.

We can validate the outputs in a similar way as we do to the inputs:

• Declare output variables. For example, in a single-integer answer, we can
call it answer.

• Declare output format. The framework can then use this format for parsing
the produced outputs, validating the format, and storing the values to output
variables.

• Declare output constraints. For example, if a problem requires the answer
modulo 10007, we have an output constraint 0 ≤ answer ≤ 10006. The
framework can then use it for validating the output variables.

6.2 Answer checker
For problems with several possible solutions, we need a checker that compares the
judge’s and contestant’s answers. Our class structures make it easy to add this
functionality. We can build a BaseChecker class on top of Problem class, similar
to BaseGenerator. The check can be then somehow implemented as follows.

class Checker : public BaseChecker<Problem> {
public :

bool check (const Problem& contestant , const Problem& judge) {
return f abs (conte s tant . answer − judge . answer) < 1e−9;

}
} ;

156.3. Offline Solution Checker

Instead of just producing test cases, we can let tcframe take another solution as input,
then report whether the outputs produced by that other solution match the outputs pro-
duced by the official solution. This way we can effectively “submit” a solution without
using the online judge. We can limit memory and time limit using, for example, ulimit
UNIX command.

6.4. Public Library for Commonly Used Structures

We want to provide a public place where people can contribute by writing generators
that generate common test cases structures. For example, polygons for convex hull prob-
lems, coin values for coin change problems, etc. The submitted generators should gen-
erate strong test cases. For example, there should be convex polygons, the coin values
should be in such a way that greedy solutions will fail, etc.

This will make it even easier for beginners to generate test cases. They can browse
the library for the structures they need and modify the generator for their problems.

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 73

References

Diks, K., Kubica, M., Radoszewski, J., and Stencel, K. (2008). A proposal for a task preparation process. Olym-
piads in Informatics, 2, 64–73.

Fernando, J. and Liem, I. (2014). Components and architectural design of an autograder system family. Olym-
piads in Informatics, 8, 69–79.

Fuadi, A. (2014). tokilib. https://github.com/fushar/tokilib/
Halim, S., Halim, F. (2010). Competitive Programming. Lulu.com
Manev, K., Yovcheva, B., Yankov, M., Petrov, P. (2010). Testing of programs with random generated test cases.

Olympiads in Informatics, 4, 76–86.
Mirzayanov, M. (2008). testlib. https://github.com/MikeMirzayanov/testlib/
van der Vegt, W. (2009). Using subtasks. Olympiads in Informatics, 3, 144–148.

A. Fuadi is a fellow in Indonesian Computing Olympiad Alumni As-
sociation. He participated and obtained a silver medal in IOI 2010. He
has been a scientific committee member for IOI training camps for
Indonesian teams 2011–2014. Graduated from Faculty of Computer
Science, Universitas Indonesia in 2014.

