
Creating Informatics Olympiad Tasks:
Exploring the Black Art

Benjamin Burton (Australia)
Mathias Hiron (France)

IOI 2008



Outline

1 What makes a good task?

2 Finding a starting point

3 Improving the task



What Makes a Good Task?

Remember your goals!

Examples:

Does not directly resemble a classic algorithm

Several solutions of varying difficulty and efficiency

Concise implementation

Also see Diks et al. (2007), Verhoeff et al. (2006).



Starting Points: Looking Around

Take inspiration from real life.

Example: Citizenship
For each country #i :

Live there for xi years → gain citizenship
No visits in yi years → lose citizenship

For how many countries can you simultaneously hold citizenship?

Advantages:

Can lead to highly original problems

Disadvantages:

Effort to find solutions

Problems often NP-hard → need modification



Starting Points: Drawing on the Day Job

Draw ideas from research papers / problems in your work.

Example: Giza
0 1 1 2 2 3 7 8 6 0

0 0 1 1 1 2 2 1 3 3
3
2
2
3
3
2
1
0
0

2
3
6
7
0

0
3
3
3
3

Advantages:

Solution already known in advance

Disadvantages:

Can underestimate difficulty



Starting Points: Modifying a Known Algorithm

Modify a standard algorithm.

Examples:

Begin with Dijkstra’s algorithm for shortest paths
→ Allow edges that reduce total distance

Advantages:

Easy to create tasks

Solution is (partially) known in advance

Disadvantages:

Tasks often similar to well-known problems

Difficult to create highly original problems



Starting Points: Borrowing from Mathematics

Draw ideas from mathematics, particularly combinatorics:

Counting / arranging objects

Naturally leads to recurrence relations → dynamic programming

Example: Problems involving triangulations of polygons

Sources of combinatorial recurrence relations:

Books on generating functions

Online encyclopedia of integer sequences

Mathematics competitions



Starting Points: Games and Puzzles

Draw ideas from games / puzzles (e.g., rec.puzzles newsgroup).

Directly: Play the game / solve the puzzle

Indirectly: Provides interesting objects and rules to play with

Example: Collier de Bonbons

=⇒ =⇒

Often NP-hard → need simplifications / constraints



Starting Points: Filling the Holes in a Domain

Aim to create new tasks in some field.

Examples: binary trees, sweep-line / sliding window algorithms

1 Make a list of “old” tasks in this field
2 List the characteristics of these tasks
3 Find a combination of characteristics that has not been used

Examples of characteristics:

Objects, attributes, relationships, constraints

Type of question — existence? maximisation? aggregation?

One question? Many questions? Interactive?



Starting Points: Filling the Holes in a Domain (ctd)

max depth?

3 4

max sum?

L

7 5

���
���
���

���
���
���

����
����
����
�������
���
���
���

��
��
��
��

��
��
��
��

����
����
����
����

max thickness?

total perimeter?

min angle?
k points

Different characteristics:

find a point / interval

among points / intervals

given / from projections

inclusions & intersections ok?



Starting Points: Filling the Holes in a Domain (ctd)

min angle?

Final problem:

find an interval

among a different set of
intervals

obtained by projecting circles

where inclusions &
intersections are allowed



Starting Points: Building from Abstract Ideas

Draw vague sketchings and refine into a usable problem:

Pick one or two types of objects and draw many of them

Add some attributes

Define relationships between objects

Choose a question

The vague sketchings become more precise as you make decisions.

Make changes (big then small) if you don’t like where it’s going

Spend time looking for solutions



Improving the Task

The original idea seldom fits all criteria for a good task.

Tasks can be improved through successive elementary changes.

Specific ways to improve a task include:

Changing the difficulty

Adding or removing subproblems

Aiming for a particular solution



Improving the Task: Changing the Difficulty

Ways of changing the difficulty:

Add or remove dimensions

�
�
�
�
�

�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
� ���

���
���
���
���

���
���
���
���
���

Make the task dynamic → ask many questions

Ask for a full list of steps instead of a single value

Reduce the memory limit



Improving the Task: Adding or Removing Subproblems

Adding a subproblem can make a task more original or more difficult:

Transform the input to hide the true nature of the task

Use the output of the task as the input for another problem

min angle?



Improving the Task: Aiming for a Solution

Looking for a solution gives opportunities to improve a task:

An idea does not work → change the task so that it does work

Solution is too simple → change the task so that it does not work

When looking for a solution, do not give up too early!

Looking for solutions is the most important and time-consuming part of
creating difficult and original tasks.


	What makes a good task?
	Finding a starting point
	Improving the task

