Creating Informatics Olympiad Tasks:

Exploring the Black Art

Benjamin Burton (Australia)
Mathias Hiron (France)

101 2008

@ What makes a good task?
9 Finding a starting point

9 Improving the task

What Makes a Good Task?

Remember your goals!

Examples:
@ Does not directly resemble a classic algorithm
@ Several solutions of varying difficulty and efficiency
@ Concise implementation

Also see Diks et al. (2007), Verhoeff et al. (2006).

Starting Points: Looking Around

Take inspiration from real life.

Example: Citizenship
@ For each country #i:

@ Live there for x; years — gain citizenship
@ No visits in y; years — lose citizenship

@ For how many countries can you simultaneously hold citizenship?

Advantages:
@ Can lead to highly original problems

Disadvantages:
@ Effort to find solutions
@ Problems often NP-hard — need modification

Starting Points: Drawing on the Day Job

Draw ideas from research papers / problems in your work.

Example: Giza

0o—
3 —
3
3 —
3

3
6 —
7 —
0—

oSS S S S S S S
WWNNWWNE OO

/
e/
e/
=/
=/
=/
N
N
=/

Advantages:
@ Solution already known in advance

Disadvantages:
@ Can underestimate difficulty

Starting Points: Modifying a Known Algorithm

Modify a standard algorithm.

Examples:

@ Begin with Dijkstra’s algorithm for shortest paths
— Allow edges that reduce total distance

Advantages:
@ Easy to create tasks
@ Solution is (partially) known in advance

Disadvantages:
@ Tasks often similar to well-known problems
@ Difficult to create highly original problems

Starting Points: Borrowing from Mathematics

Draw ideas from mathematics, particularly combinatorics:
@ Counting / arranging objects
@ Naturally leads to recurrence relations — dynamic programming

Example: Problems involving triangulations of polygons

AN NIV P
ARSIV

Sources of combinatorial recurrence relations:
@ Books on generating functions
@ Online encyclopedia of integer sequences
@ Mathematics competitions

Starting Points: Games and Puzzles

Draw ideas from games / puzzles (e.g., r ec. puzzl es newsgroup).
@ Directly: Play the game / solve the puzzle
@ Indirectly: Provides interesting objects and rules to play with

Example: Collier de Bonbons

© @

“e ¢ @

®L ¢ ¢

OLLe ¢
GO0GLEE - @ =

COoeLEe @

GOGLEGLE ©

GLeLLEGE @

COLOOOOEL L 2]

Often NP-hard — need simplifications / constraints

Starting Points: Filling the Holes in a Domain

Aim to create new tasks in some field.
Examples: binary trees, sweep-line / sliding window algorithms

© Make a list of “old” tasks in this field
@ List the characteristics of these tasks

© Find a combination of characteristics that has not been used

Examples of characteristics:
@ Objects, attributes, relationships, constraints
@ Type of question — existence? maximisation? aggregation?
@ One question? Many questions? Interactive?

Starting Points: Filling the Holes in a Domain (ctd)

\ — 1l &l mnl 1 total perimeter?
I max depth? |
max sum?
[3[al7]5] [[][] s
L |
N
L
k points '
¥, Mminangle? vl
T N
s
- I max thickness?

Different characteristics:

@ find a point / interval @ given / from projections
@ among points / intervals @ inclusions & intersections ok?

Starting Points: Filling the Holes in a Domain (ctd)

min angle?

® O

Final problem:

@ find an interval @ obtained by projecting circles

@ among a different set of @ where inclusions &
intervals intersections are allowed

Starting Points: Building from Abstract Ideas

Draw vague sketchings and refine into a usable problem:
@ Pick one or two types of objects and draw many of them
@ Add some attributes
@ Define relationships between objects
@ Choose a question

The vague sketchings become more precise as you make decisions.

@ Make changes (big then small) if you don't like where it's going
@ Spend time looking for solutions

© () D

Improving the Task

The original idea seldom fits all criteria for a good task.
Tasks can be improved through successive elementary changes.

Specific ways to improve a task include:
@ Changing the difficulty
@ Adding or removing subproblems
@ Aiming for a particular solution

Improving the Task: Changing the Difficulty

Ways of changing the difficulty:
@ Add or remove dimensions
7
| | o
L E Z
‘ | [
|1

| %
v

-
7

E| o

@ Make the task dynamic — ask many questions
@ Ask for a full list of steps instead of a single value
® Reduce the memory limit

Improving the Task: Adding or Removing Subproblems

Adding a subproblem can make a task more original or more difficult:
@ Transform the input to hide the true nature of the task

L

@ Use the output of the task as the input for another problem

=

Improving the Task: Aiming for a Solution

Looking for a solution gives opportunities to improve a task:
@ An idea does not work — change the task so that it does work
@ Solution is too simple — change the task so that it does not work

When looking for a solution, do not give up too early!

Looking for solutions is the most important and time-consuming part of
creating difficult and original tasks.

	What makes a good task?
	Finding a starting point
	Improving the task

