
Algorithms without Programming

Marcin Kubica, Jakub Radoszewski

Poland

IOI Conference August 16, 2010

Jakub Radoszewski Algorithms without Programming



Plan of the Presentation

1 Introduction and discussion of previous work
2 Examples
3 Conclusions

Jakub Radoszewski Algorithms without Programming



The Objectives

1 Programming contests popularize computer
science.

2 Programming might be too much for the first
step.

3 We can first introduce algorithms, and
programming afterwards.

4 Problems formulated as (mathematical)
puzzles, solutions involve algorithmics.

Jakub Radoszewski Algorithms without Programming



The Objectives

1 Programming contests popularize computer
science.

2 Programming might be too much for the first
step.

3 We can first introduce algorithms, and
programming afterwards.

4 Problems formulated as (mathematical)
puzzles, solutions involve algorithmics.

Jakub Radoszewski Algorithms without Programming



The Objectives

1 Programming contests popularize computer
science.

2 Programming might be too much for the first
step.

3 We can first introduce algorithms, and
programming afterwards.

4 Problems formulated as (mathematical)
puzzles, solutions involve algorithmics.

Jakub Radoszewski Algorithms without Programming



The Objectives

1 Programming contests popularize computer
science.

2 Programming might be too much for the first
step.

3 We can first introduce algorithms, and
programming afterwards.

4 Problems formulated as (mathematical)
puzzles, solutions involve algorithmics.

Jakub Radoszewski Algorithms without Programming



Previous Work

Bebras competition (www.bebras.org; Dagiene &
Futschek, ISSEP 2008; Dagiene, ISSEP 2010)

South African olympiad (Merry et al., Olymp. in Inf. 2,
2008)

Australian Informatics Competition (Clark, The Austr.
Math. Teach. 62, 2006)

Ugale competition (Opmanis, Olymp. in Inf. 3, 2009)

Project Euler (projecteuler.net)

Internet Problem Solving Contest (ipsc.ksp.sk)

Jakub Radoszewski Algorithms without Programming



Common Ideas

Attractively-formulated problems involving computer
science (in the statement, in the solution or in both).

Solutions require creativity rather than prior knowledge.

Jakub Radoszewski Algorithms without Programming



Bebras Competition

Bebras Competition

problems should be solvable by hand within 3 minutes
each, forming a competition round,

one of the main goals is popularization of computer
science.

Our Ideas

puzzle-type problems which could be harder and contain
hints, solvable using a pen and a piece of paper,

one of the main goals is popularization of computer
science among pupils interested in mathematics.

Jakub Radoszewski Algorithms without Programming



Ugale Competition, IPSC

Ugale & IPSC Competitions

introducing new and attractive types of computer
science problems.

Our Ideas

any computer science is hidden within the ostensibly
purely mathematical solution.

Jakub Radoszewski Algorithms without Programming



Project Euler

Project Euler

problems with purely mathematical formulation, but
solutions employing computing,

mostly devoted to number-theoretic problems.

Our Ideas

problems with purely mathematical formulation, solutions
employing well-hidden methods of computer science.

Jakub Radoszewski Algorithms without Programming



Example 1: Uni-color Triangles

10

9
8

7

6

5

4
3

2

1

How many uni-color triangles, with vertices at the given
points, are present in the figure?

Jakub Radoszewski Algorithms without Programming



Straightforward Approach

10

9
8

7

6

5

4
3

2

1

(1,2,3) forms a uni-color triangle.

Jakub Radoszewski Algorithms without Programming



Straightforward Approach

10

9
8

7

6

5

4
3

2

1

(1,2,4) is not a uni-color triangle.

Jakub Radoszewski Algorithms without Programming



Straightforward Approach

10

9
8

7

6

5

4
3

2

1

(1,2,5) is not a uni-color triangle.

Jakub Radoszewski Algorithms without Programming



Straightforward Approach

10

9
8

7

6

5

4
3

2

1

(1,2,6) forms a uni-color triangle. . .

Jakub Radoszewski Algorithms without Programming



A Different Approach

The total number of triangles is:(
10
3

)
=

10 · 9 · 8
1 · 2 · 3

= 120.

We need a more efficient approach!

Hint: count multi-color triangles.

Jakub Radoszewski Algorithms without Programming



A Different Approach

The total number of triangles is:(
10
3

)
=

10 · 9 · 8
1 · 2 · 3

= 120.

We need a more efficient approach!

Hint: count multi-color triangles.

Jakub Radoszewski Algorithms without Programming



Multi-color Triangles

1 Each multi-color triangle contains 2 vertices in which 2
sides of different colors meet.

2 Every pair of lines of different colors meeting at a point
induces one multi-color triangle.

3 By considering all such pairs of lines, we will count twice
the number of multi-color triangles.

Jakub Radoszewski Algorithms without Programming



Multi-color Triangles

1 Each multi-color triangle contains 2 vertices in which 2
sides of different colors meet.

2 Every pair of lines of different colors meeting at a point
induces one multi-color triangle.

3 By considering all such pairs of lines, we will count twice
the number of multi-color triangles.

Jakub Radoszewski Algorithms without Programming



Multi-color Triangles

1 Each multi-color triangle contains 2 vertices in which 2
sides of different colors meet.

2 Every pair of lines of different colors meeting at a point
induces one multi-color triangle.

3 By considering all such pairs of lines, we will count twice
the number of multi-color triangles.

Jakub Radoszewski Algorithms without Programming



Multi-color Triangles

1 2 3 4 5 6 7 8 9 10
1 g g b b g g g b g
2 g g g b g g g b g
3 g g b b g b b b g
4 b g b b g b g b b
5 b b b b b g g g g
6 g g g g b g g b b
7 g g b b g g g g b
8 g g b g g g g b g
9 b b b b g b g b b

10 g g g b g b b g b

Jakub Radoszewski Algorithms without Programming



Multi-color Triangles

1 2 3 4 5 6 7 8 9 10 (#b, #g)
1 g g b b g g g b g (3, 6)
2 g g g b g g g b g (2, 7)
3 g g b b g b b b g (5, 4)
4 b g b b g b g b b (6, 3)
5 b b b b b g g g g (5, 4)
6 g g g g b g g b b (3, 6)
7 g g b b g g g g b (3, 6)
8 g g b g g g g b g (2, 7)
9 b b b b g b g b b (7, 2)

10 g g g b g b b g b (4, 5)

Jakub Radoszewski Algorithms without Programming



Multi-color Triangles

1 2 3 4 5 6 7 8 9 10 (#b, #g) #b·#g
1 g g b b g g g b g (3, 6) 18
2 g g g b g g g b g (2, 7) 14
3 g g b b g b b b g (5, 4) 20
4 b g b b g b g b b (6, 3) 18
5 b b b b b g g g g (5, 4) 20
6 g g g g b g g b b (3, 6) 18
7 g g b b g g g g b (3, 6) 18
8 g g b g g g g b g (2, 7) 14
9 b b b b g b g b b (7, 2) 14

10 g g g b g b b g b (4, 5) 20

Jakub Radoszewski Algorithms without Programming



The Solution

In total, the number of multi-color triangles:

18+14+20+18+20+18+18+14+14+20 = 174.

The number of uni-color triangles:

120 − 174
2

= 33.

Jakub Radoszewski Algorithms without Programming



The Solution

In total, the number of multi-color triangles:

18+14+20+18+20+18+18+14+14+20 = 174.

The number of uni-color triangles:

120 − 174
2

= 33.

Jakub Radoszewski Algorithms without Programming



Methodological Comments

Brute force solution has Θ(n3) time complexity.

The large number of possible triangles (120) strongly
encourages to seek for a better solution.

The improved solution has Θ(n2) time complexity and is
easy to perform by hand.

The hint makes the task a lot easier.

Jakub Radoszewski Algorithms without Programming



Example 2: Coins

We are given 11 coins of the following values:

7, 300, 35, 83, 1, 17, 2, 1, 17, 170, 5.

What is the smallest (positive integer) amount of money that
cannot be paid using the coins?

E.g., 59 = 35+ 17+ 5+ 1+ 1.

On the other hand, the sum

639 = (7+ 300+ 35+ 83+ 1+ 17+ 2+ 1+ 17+ 170+ 5) + 1

cannot be paid.

Jakub Radoszewski Algorithms without Programming



First Observations

Recall the values of coins:

7, 300, 35, 83, 1, 17, 2, 1, 17, 170, 5

1 = 1, 2 = 2, 3 = 2 + 1, 4 = 2 + 1 + 1, 5 = 5, 6 = 5 + 1,
7 = 5 + 1 + 1, 8 = 5 + 2 + 1, . . .

Clearly, we need something smarter. Let us order the values of
the coins:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

For each prefix of the list, let us find out what amounts of
money can be paid with the corresponding coins.

Jakub Radoszewski Algorithms without Programming



First Observations

Recall the values of coins:

7, 300, 35, 83, 1, 17, 2, 1, 17, 170, 5

1 = 1, 2 = 2, 3 = 2 + 1, 4 = 2 + 1 + 1, 5 = 5, 6 = 5 + 1,
7 = 5 + 1 + 1, 8 = 5 + 2 + 1, . . .

Clearly, we need something smarter. Let us order the values of
the coins:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

For each prefix of the list, let us find out what amounts of
money can be paid with the corresponding coins.

Jakub Radoszewski Algorithms without Programming



First Observations

Recall the values of coins:

7, 300, 35, 83, 1, 17, 2, 1, 17, 170, 5

1 = 1, 2 = 2, 3 = 2 + 1, 4 = 2 + 1 + 1, 5 = 5, 6 = 5 + 1,
7 = 5 + 1 + 1, 8 = 5 + 2 + 1, . . .

Clearly, we need something smarter. Let us order the values of
the coins:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

For each prefix of the list, let us find out what amounts of
money can be paid with the corresponding coins.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]

prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]

prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]

prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]

prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]

prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.

Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Towards the Solution

Recall the ordered list:

1, 1, 2, 5, 7, 17, 17, 35, 83, 170, 300.

prefix 1: amounts [0, 1]
prefix 1, 1: amounts [0, 2]
prefix 1, 1, 2: amounts [0, 4]
prefix 1, 1, 2, 5: amounts [0, 9]
prefix 1, 1, 2, 5, 7: amounts [0, 16]
prefix 1, 1, 2, 5, 7, 17: amounts [0, 33]

Continue until the prefix 1, 1, 2, 5, 7, 17, 17, 35, 83, for
which the amounts are in [0, 168], but 170 > 168 + 1.
Thus, the answer is 169.

Jakub Radoszewski Algorithms without Programming



Methodological Comments

Brute force solution has Θ(n · S) time complexity. Either
dynamic programming or “guessing the decomposition”.

Optimal solution has O(n) time complexity. It is in a
way greedy.

Jakub Radoszewski Algorithms without Programming



Example 3: Divisible by 13?

Does the following sequence of numbers:

(1, 1, 9, 7, 12, 4, 12, 5, 8, 2, 7, 2, 10, 2, 3)

contain a non-empty, continuous subsequence, whose sum is
divisible by 13? If so, what is the number of such
subsequences?

Jakub Radoszewski Algorithms without Programming



Example 4: Palindromic numbers

A number is called palindromic if its decimal number is a
palindrome, e.g., 5, 22 and 21 312.

How many palindromic numbers are there in the interval
[285 924, 84 633 902]?

Jakub Radoszewski Algorithms without Programming



Conclusions

Each of the presented tasks was a small instance of a regular
programming contest task.

Is every such task good for our purposes?

Jakub Radoszewski Algorithms without Programming



Algorithmic Puzzles

What should we take into consideration?

The model solution minimizes thinking-time +
“execution”-time.

It is better to exclude problems which require classical
algorithms and advanced techniques.

It is good to have a simple but slow solution.

The hints may serve as “after-teasers”.

Jakub Radoszewski Algorithms without Programming



Algorithmic Puzzles

What should we take into consideration?

The model solution minimizes thinking-time +
“execution”-time.

It is better to exclude problems which require classical
algorithms and advanced techniques.

It is good to have a simple but slow solution.

The hints may serve as “after-teasers”.

Jakub Radoszewski Algorithms without Programming



Algorithmic Puzzles

What should we take into consideration?

The model solution minimizes thinking-time +
“execution”-time.

It is better to exclude problems which require classical
algorithms and advanced techniques.

It is good to have a simple but slow solution.

The hints may serve as “after-teasers”.

Jakub Radoszewski Algorithms without Programming



Algorithmic Puzzles

What should we take into consideration?

The model solution minimizes thinking-time +
“execution”-time.

It is better to exclude problems which require classical
algorithms and advanced techniques.

It is good to have a simple but slow solution.

The hints may serve as “after-teasers”.

Jakub Radoszewski Algorithms without Programming



The End

Thank you for your attention!

Jakub Radoszewski Algorithms without Programming


