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A NECESSARY REMARK

Because of the presence of colleagues 
form  schools of Thailand, this speech is 
going beyond the frame of usual

So, we will not present the results of the  So, we will not present the results of the  
published in the Journal research 

We will try to demonstrate the 
knowledge and the abilities necessary 
to create/solve competitive tasks 



CONDICIO SINE QUA NON

• Programming language is the condition 
without which it is impossible to do 
serious work in Informatics

•We will not comment here what kind of •We will not comment here what kind of 
programming language to use

• By different reasons the most popular 
nowadays are the C-like programming 
languages



CONDICIO SINE QUA NON

• Programming environment (IDE) is ano-
ther condition without which it is very 
difficult to do serious work in Informatics

• Editor (syntactically oriented)• Editor (syntactically oriented)

•Compiler

• Linkage editor/Loader

• Debugger

• DEV C++, CodeBlocks, MS Visual Studio, 
Eclipse, etc.



TO BE PRESENTED HERE ….

• Knowledge from the Theory of 
algorithms and the ability to apply it in 
practice

• Knowledge of some discrete mathema-• Knowledge of some discrete mathema-
tical objects and the ability to apply it 
for modeling of tasks situations  

• Knowledge of some algorithmic appro-
aches (schemes) which simplify crea-
tion of algorithms  



THEORY OF ALGORITHMS

• No mathematical definition of the  
notion algorithm
• Algorithm ≅ Program 

ProgramInput Output

Correctness

Necessary CPU time 

Elementary steps/ 
operations

Size



THEORY OF ALGORITHMS

• Size of αααα s(αααα) = number N of characters
• TA(N)=max

∀α∀α∀α∀α,s(αααα)=N {number of steps that A 
execute when working on input αααα} – time 
complexity of the algorithm Acomplexity of the algorithm A

Program, that
Implement
algorithm A

Input αααα Output

Correctness

Necessary CPU time 

Elementary steps/ 
operations

Size



THEORY OF ALGORITHMS

int a[],N;/* each int is a character */  
bsort()
{ int i,j,t; 

3     2   3
for(i=N-1;i>0;i--)  3+N*5+ΣΣΣΣi=1,�,N-1f(i)for(i=N-1;i>0;i--)  3+N*5+ΣΣΣΣi=1,�,N-1f(i)

2   3    3
for(j=1;j<=i;j++) 2+(i+1)*6+i*30 =

10 = 36*i+8 = f(i)
30 if(a[j]>a[j+1])

5      9           6
20 {t=a[j];a[j]=a[j+1];a[j+1]=t;}
}



THEORY OF ALGORITHMS

Tbsort (N) = 3 + 5N + ΣΣΣΣi=1,2,�,N-1 f (i) =
= 3 + 5N + ΣΣΣΣi=1,2,�,N-1 (36i + 8) =
= 3 + 5N + 8(N – 1) + 36 ΣΣΣΣi=1,2,�,N-1 i =
= 13N – 5 + 18N(N – 1) =
= 18N2 – 5N – 5 = O(N2)= 18N2 – 5N – 5 = O(N2)

• Asymptotical notation
• O(g(N)) – grows no faster than g(N) ( ≤≤≤≤ )
• o(g(N)) – grows slower than g(N) ( < )
• ΩΩΩΩ(g(N)) – grows no slower than g(N) ( ≥≥≥≥ )
• ωωωω(g(N)) – grows faster than g(N) ( > )
• ΘΘΘΘ(g(N)) – grows like g(N) ( = )



THEORY OF ALGORITHMS

• Partial order of classes of algorithm’s 
time complexity

•O(lg N),O(N),O(N.lg N),O(N2), O(N2.lg N),…, 

O(2N), …, O(NN), …. O(2N), …, O(NN), …. 

• Two algorithms for the same task with 
comparable different complexity classes 
– chose the better

• Two algorithms for the same task within 
same complexity class – chose those 
with better constants



THEORY OF ALGORITHMS
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THEORY OF ALGORITHMS
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GRAPH THEORY

• Graphs are very 
simple DM objects

• Set of vertices
V = {v , v , …, v }

1

234

V = {v1, v2, …, vN}

• Set of edges
E = {e1, e2, …, eM}

• Each edge ek

links some couple 
{vi, vj} of vertices          

2

5
6

7



GRAPH THEORY

• Path is a sequence 
of vertices, each two 
consecutive vertices 
linked by an edge

1

234

linked by an edge

• The sequence (5, 4, 
1, 2, 7) is a path from 
5 to 7

• Number of edges –
length of the path        

2

5
6

7



GRAPH THEORY

• Cycle in the graph 
is a path, such that 
starts and finishes in 
a same vertex

1

234

a same vertex

• The sequence (5, 
4, 1, 2, 7, 6, 5) is a 
cycle        

2

5
6

7



GRAPH THEORY

• Graph G(V,E) is 
connected if each 2 
vertices are con-
nected by a path

1

234

nected by a path

• The graph on the 
Figure is connected

• Deleting edges  
we could obtain not 
connected graph

2

5
6

7



GRAPH THEORY

• Connected graph 
G(V,E) without 
cycles is called tree
• To turn the graph 
on the Figure in tree 

1

234• To turn the graph 
on the Figure in tree 
we have  to cut 
each cycle. 
•After deleting an 
edge of a cycle the 
graph remains 
connected

2

5
6

7



GRAPH THEORY

• A path of minimal 
length from vi to vj

among all such pats 
is called shortest 

1

234

is called shortest 
path

• (5, 4, 1, 2, 7) is not a 
shortest path from 5 
to 7. A shortest path 
from 5 to 7 is (5,6,7)

2

5
6

7



ALGORITHMIC SCHEMES

• An algorithmic scheme (AS) is a 
procedure very similar to an algorithm but, 
in some sense, uncompleted, and so - not 
solving any tasksolving any task

• If we have a task for which an algorith-
mic scheme is appropriate, we could 
complete the procedure to an algorithm

• Using algorithmic schemes simplify, in 
many cases, development of algorithms 



ALGORITHMIC SCHEMES

• Very popular AS are:

• Divide and conquer

• Breadth-first traversal of graph

• Breadth-first traversal of graph

• Euler traversal of graph

• Dynamic programming

• Greedy

• Backtracking



ALGORITHMIC SCHEMES

AS Divide and 
conquer
• Split the task of size 
N to smaller subtasks 

N

N N N. . .N to smaller subtasks 
of same kind 
• Solve subtasks
• Compose solution
from the solutions of 
the subtask

N1 N2 Nk. . .

S1 S2 Sk

S1 S2 Sk. . .

. . .



OUR TASK

• For the NO in Math one of the co-authors 
– prof. N. Nikolov, leader of Bulgarian 
team for IOM, proposed the following (in 
following the vertices will be labeled with 
1, 2, 3, …) 
following the vertices will be labeled with 
1, 2, 3, …) 

• TASK: A tree D has L vertices of degree 1 
(i.e. that are linked to exactly one other 
vertex) – 1, 2, …, L. The length lijof the 
single path from i to j is given for all i and 
j,1 ≤≤≤≤ i < j ≤≤≤≤ L. Reconstruct the tree!    



OUR TASK

2 3 1 2 3 4 5 6

1 4 4 5 5 5

2 4 2 5 5 5

1 4 5 6

3 4 2 5 5 5

4 5 5 5 2 2

5 5 5 5 2 2

6 5 5 5 2 2



OUR TASK

• First, let us remark that the length lij of the 
shortest path between 2 vertices is a 
distance in the usual math sense (like the 
Euclidean), because:

Axiom 1: l ≥≥≥≥ 0, ∀∀∀∀ i,j, and l = 0 iff i = j;•Axiom 1: lij ≥≥≥≥ 0, ∀∀∀∀ i,j, and lij = 0 iff i = j;
• Axiom 2: lij = lji, ∀∀∀∀ i and j;
• Axiom 3 (triangle inequality): For ∀∀∀∀ i, j 
and k, the inequality lij + ljk ≥≥≥≥ lik
• So, we will call lij a distance between i
and j and will use the existing analogy to 
the Euclidean distance



OUR TASK

Lemma. Let D = (V, E) be a tree and i, j
and k be pairwise distinct vertices. There is
a unique vertex x that belongs to the three
pats– from i to j, from j to k, and from i to k.
From the Proof (omitted) follows that:From the Proof (omitted) follows that:

• lix = (lij + lik – ljk )/2,  i j

• ljx = (lij + ljk – lik )/2, 

• lkx = (lik + ljk – lij )/2.  
k



OUR TASK

• We will try the AS Divide and conquer
• Decomposition in subtasks, solving the 
subtasks and composition will be done in 
parallel

1 6

l16 = 5

2
3

x1

5

x2

4



OUR TASK

Divide and conquer algorithm
• Chose two pending vertices i and j and 
build a path of length lij between them 
(composition/reconstruction)
• For each k on the path, k ≠ i and k ≠ j, • For each k on the path, k ≠ i and k ≠ j, 
• identify (by the Lemma) the vertex x 
and the sub-tree  Tx rooted  in x (splitting 
in subtasks)
• solve recursively the task for Tx . Use the 
Lemma to find lip, when necessary, for 
each pending vertex p (decomposition)



OUR TASK

• Last step in preparation of the task for a 
contest, before creating the test cases, is 
the estimation of time complexity of the 
algorithm   
• This is important step, because without • This is important step, because without 
the estimation of the complexity is difficult  
to choose the size of test cases
• Unfortunately, finding the time complexi-
ty of algorithms for reconstruction of 
graphs, and especially of tree by its met-
ric properties could be not easy   



OUR TASK

• The usual expectation is that TA(N) is 
growing with growing of N 
• It is not the same with the considered 
task – here the complexity depend too 
much of the number M of the inner much of the number M of the inner 
vertces

…

L = 10000000000,M=1

…

L = 2,M=10000000000



OUR TASK

• One way to manage the problem is to 
ask not reconstruction, but only the num-
’ber of inner vertices (see the algorithm)

• The other is to eliminate the vertices of • The other is to eliminate the vertices of 
degree 2. Looking again the algorithm we 
could see that these vertices do not 
generate subtasks and so – could be 
reduced.



OUR TASK

2 32 3

1 4 5 61 4 5 6

2
2



OUR TASK

• Using this simplification we succeed to 
estimate the complexity of the algorithm

• It happens that our algorithm, let us call 
it MNM make O(L2) steps solving the task it MNM make O(L2) steps solving the task 
for three with L pending vertices

• Because the size N of the input of the 
task is ΘΘΘΘ(L2), the complexity of  our 
algorithm is TMNM(N) = O(N) – nice linear 
algorithm



OUR TASK

• It is interesting to try to solve the task 
when the edges of the tree are weighted
and the length of a path is a sum the 
weights of edgesweights of edges

• But it is impossible. Trivial counterexam-
ple is the tree with 2 pending vertices   

lij = 5

3

3

2

1 1

i

i

j

j



OUR TASK

• The reason for the impossibility to solve 
the task for weighted graphs is again in 
the vertices of degree 2.

• Theorem. If the graph is without vertices • Theorem. If the graph is without vertices 
of degree 2 than it could be reconstruc-
ted by the distances among the pending 
veritces

• The algorithm is practically the same 
and its complexity is again linear



CONCLUSIONS

• Task was included un the test set of SEE 
Regional contest of ACM ICPC – 10.2010

• 55 teams, 33 of which from traditionally 
strong Ukraine, Romania and Bulgariastrong Ukraine, Romania and Bulgaria

• Only 11 teams submitted correct solution 
(out of 10 problem - one was not solved 
and 1 solved by only 5 teams) 

• So, we could classify the difficulty of the 
tasks as above the average



CONCLUSIONS

• We try to solve another tasks with the 
same approach

• TASK: Let D(V,E) is a weighted tree and 
the distances l among all of its vertices. the distances lij among all of its vertices. 
Reconstruct the tree.

• Trivial modification MNMW of MNM sol-
ved the problem (solution is in the paper)

• The time complexity of MNMW is again 
linear



CONCLUSIONS

• Task was included un the test set of 
Bulgarian Autumn tournament, 11.2010, in 
the second age group – 16-17 years old

• 53 students from Bulgaria, Croatia, • 53 students from Bulgaria, Croatia, 
Greece, Macedonia, Serbia and Romania, 

•43 students submitted solution, 15 obtai-
ned at least 70%, and 10 of them – 100% 

• So, we could classify the difficulty of the 
this tasks as below the average



CONCLUSIONS

• Dependence of the time complexity from a 
hidden parameter of the graph make the 
first task unattractive 

• Some efforts have to be spent during the • Some efforts have to be spent during the 
training of contestants in order to be able to 
manage tasks with hidden parameters

• Graph reconstruction problems seem to be 
a good way to enlarge the scope of the 
tasks given at programming contests. 



CONCLUSIONS

•Open problem: to reconstruct the tree 
from the distances between all vertices 
(or between the outer vertices) when it is 
not given which distance is between not given which distance is between 
which two vertices. 

• For solutions of  the discussed two 
problems this knowledge is crucial.



THANKS FOR YOUR

ATTENTION!ATTENTION!

ANY QUESTIONS?


