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Introduction

Introduction

The usual approaches of solving problems:

making observations,

guessing some properties,

deducing solutions,

. . .

An alternative:

use a computer,

experiment,

visualize,

precompute,

generate data and analyze it.
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Playing games

Number game

Two-player game

state: a pair (x , y) of positive integers (x , y ≤ 109)

move

1 a player subtracts 1 from one of the numbers

2 then divides both numbers by their GCD

the player who gets (1, 1) loses the game

(4, 7)→ (2, 3)→ (1, 1)

(4, 7)→ (3, 7)→ (1, 2)→ (1, 1)
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Playing games

Task

Task

Determine if a given position is winning.

We can implement a simple DP algorithm (running in O(n2 log n))
to solve the problem for i , j ≤ n.
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Playing games

Visualization

A cell [i , j ] is white if and only i� position (i , j) is winning.

We conjecture that (i , j) is losing if and only if i and j have the

same parity.
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Playing games

Proof

We prove the claim by induction on i + j .

Base case (i = j = 1) follows from rules. Now assume that the

claim holds for all i ′, j ′, such that i ′ + j ′ < i + j .

1 If both numbers have the same parity, then after the move

they have di�erent parity, so the position is losing.

2 If the parity is di�erent, we subtract 1 from the even number.

Hence, after the move both numbers are odd, so the opponent

faces a losing position.
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Number sequences

Antiprime numbers

An antiprime number is a positive integer for which
the number of divisors increases to a record.

First few elements of the sequence are

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180.

Task (8th POI)

Compute the greatest antiprime which is lower than c (c ≤ 2 · 109).
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Number sequences

Precomputation

Ine�cient solution:

We iterate over consecutive positive integers ≤ M and count

their divisors.

This requires O(M
√
M) time.

Using Eratosthenes' sieve, one can improve the complexity to

O(M logM) time.

We discover that for M = 106 there are only 38 antiprimes.
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Number sequences

Solution

A possible solution:

1 Implement the O(M logM) solution.

2 Run it for M = 2 · 109.
3 Wait.

4 Hardcode the result into the program.
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Number sequences

Possible improvements

The algorithm can be improved signi�cantly.

If n = 2w1 · 3w2 · 5w3 · 7w4 · . . . then n has

(w1 + 1)(w2 + 1)(w3 + 1)(w4 + 1) . . . divisors.

We can only consider those numbers, where

w1 ≥ w2 ≥ w3 ≥ . . ..



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Possible improvements

The algorithm can be improved signi�cantly.

If n = 2w1 · 3w2 · 5w3 · 7w4 · . . . then n has

(w1 + 1)(w2 + 1)(w3 + 1)(w4 + 1) . . . divisors.

We can only consider those numbers, where

w1 ≥ w2 ≥ w3 ≥ . . ..



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Problem: A squirrel in a plane (ONTAK 2007)

Setting:

in�nite plane with n ≤ 7 nuts,

nuts placed at points (xi , yi ) −2 ≤ xi , yi ≤ 2,

a squirrel (initially at (0, 0), facing north) collecting nuts.
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Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.
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Speeding up simulations

Task

Task

Compute the number of nuts after t ≤ 109 moves.

We simulate several thousand steps of the squirrel for di�erent

inputs.
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Speeding up simulations

Conclusions

Observations:

The squirrel repeats a sequence of 104 moves,

during which 12 nuts are put on the ground.

The cycle starts close to the origin.
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Speeding up simulations

Solution

We simulate the moves of the squirrel.

The simulation stops after x moves if the squirrel

has reached the distance of 200 units from the origin and

t − x is divisible by 104.

We output the current number of nuts + t−x
104
· 12.
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Speeding up simulations

Correctness

How do we know if it is correct?

Well, we can check all 726 206 initial con�gurations.
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Combinatorics

Stirling numbers of the second kind

{
n

m

}
= number of partitions of {1, 2, . . . , n} into m nonempty sets.

E.g.
{
4
2

}
= 7:

{1, 2, 3} ∪ {4} {1, 2, 4} ∪ {3} {1, 3, 4} ∪ {2} {2, 3, 4} ∪ {1}

{1, 2} ∪ {3, 4} {1, 3} ∪ {2, 4} {1, 4} ∪ {2, 3}
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Combinatorics

Problem description

Problem (ACM ICPC SWERC 2001)

Knowing that:

{
n

m

}
=


0 if n = m = 0

1 if n = 0 ∧m > 0 or m = 0 ∧ n > 0

m
{
n−1
m

}
+
{
n−1
m−1

}
if n > 0 ∧m > 0

compute
{
n
m

}
mod 2 for 0 ≤ m ≤ n ≤ 109.
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Combinatorics

a[x ][y ] =
{
x
y

}
mod 2

We have a[x ][y ] = b[x ][y ].
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Combinatorics

a[x ][y − 1] =
{
x
y

}
mod 2 b[x ][y ] = 1 ⇐⇒ x&y = 0

We have a[x ][y ] = b[x ][y ].
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x
y
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x
y
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Combinatorics

Conclusions

From

a[x − y ][b y−1
2
c] =

{
x
y

}
mod 2,

b[x ][y ] = 1 ⇐⇒ x&y = 0,

a[x ][y ] = b[x ][y ]

we get {
x

y

}
mod 2 =

(
(x − y) &

⌊
y − 1

2

⌋)
== 0.
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Combinatorics

Summary

Solving tasks with a computer can:

provide a deeper understanding for the student,

develop engineering skills,

stimulate creativity,

teach students an alternative way of approaching problems,

result in �nding a better solution.


	Introduction
	Playing games
	Number sequences
	Speeding up simulations
	Combinatorics

