
RECONSTRUCTION OF TREES

Kr. Manev, N. Nikolov, M. Markov

RECONSTRUCTION OF TREES

USING METRIC PROPERTIES

A NECESSARY REMARK

Because of the presence of colleagues
form schools of Thailand, this speech is
going beyond the frame of usual

So, we will not present the results of the So, we will not present the results of the
published in the Journal research

We will try to demonstrate the
knowledge and the abilities necessary
to create/solve competitive tasks

CONDICIO SINE QUA NON

• Programming language is the condition
without which it is impossible to do
serious work in Informatics

•We will not comment here what kind of •We will not comment here what kind of
programming language to use

• By different reasons the most popular
nowadays are the C-like programming
languages

CONDICIO SINE QUA NON

• Programming environment (IDE) is ano-
ther condition without which it is very
difficult to do serious work in Informatics

• Editor (syntactically oriented)• Editor (syntactically oriented)

•Compiler

• Linkage editor/Loader

• Debugger

• DEV C++, CodeBlocks, MS Visual Studio,
Eclipse, etc.

TO BE PRESENTED HERE ….

• Knowledge from the Theory of
algorithms and the ability to apply it in
practice

• Knowledge of some discrete mathema-• Knowledge of some discrete mathema-
tical objects and the ability to apply it
for modeling of tasks situations

• Knowledge of some algorithmic appro-
aches (schemes) which simplify crea-
tion of algorithms

THEORY OF ALGORITHMS

• No mathematical definition of the
notion algorithm
• Algorithm ≅ Program

ProgramInput Output

Correctness

Necessary CPU time

Elementary steps/
operations

Size

THEORY OF ALGORITHMS

• Size of αααα s(αααα) = number N of characters
• TA(N)=max

∀α∀α∀α∀α,s(αααα)=N {number of steps that A
execute when working on input αααα} – time
complexity of the algorithm Acomplexity of the algorithm A

Program, that
Implement
algorithm A

Input αααα Output

Correctness

Necessary CPU time

Elementary steps/
operations

Size

THEORY OF ALGORITHMS

int a[],N;/* each int is a character */
bsort()
{ int i,j,t;

3 2 3
for(i=N-1;i>0;i--) 3+N*5+ΣΣΣΣi=1,�,N-1f(i)for(i=N-1;i>0;i--) 3+N*5+ΣΣΣΣi=1,�,N-1f(i)

2 3 3
for(j=1;j<=i;j++) 2+(i+1)*6+i*30 =

10 = 36*i+8 = f(i)
30 if(a[j]>a[j+1])

5 9 6
20 {t=a[j];a[j]=a[j+1];a[j+1]=t;}
}

THEORY OF ALGORITHMS

Tbsort (N) = 3 + 5N + ΣΣΣΣi=1,2,�,N-1 f (i) =
= 3 + 5N + ΣΣΣΣi=1,2,�,N-1 (36i + 8) =
= 3 + 5N + 8(N – 1) + 36 ΣΣΣΣi=1,2,�,N-1 i =
= 13N – 5 + 18N(N – 1) =
= 18N2 – 5N – 5 = O(N2)= 18N2 – 5N – 5 = O(N2)

• Asymptotical notation
• O(g(N)) – grows no faster than g(N) (≤≤≤≤)
• o(g(N)) – grows slower than g(N) (<)
• ΩΩΩΩ(g(N)) – grows no slower than g(N) (≥≥≥≥)
• ωωωω(g(N)) – grows faster than g(N) (>)
• ΘΘΘΘ(g(N)) – grows like g(N) (=)

THEORY OF ALGORITHMS

• Partial order of classes of algorithm’s
time complexity

•O(lg N),O(N),O(N.lg N),O(N2), O(N2.lg N),…,

O(2N), …, O(NN), …. O(2N), …, O(NN), ….

• Two algorithms for the same task with
comparable different complexity classes
– chose the better

• Two algorithms for the same task within
same complexity class – chose those
with better constants

THEORY OF ALGORITHMS

80000

100000

120000

0

20000

40000

60000

1
0

4
0

7
0

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

6
1
0

6
4
0

6
7
0

7
0
0

7
3
0

7
6
0

7
9
0

8
2
0

8
5
0

8
8
0

9
1
0

9
4
0

9
7
0

1
0
0
0

1
0
3
0

0.1*N*N

N*Lg(N,1.2)

2*N + 5000

THEORY OF ALGORITHMS

1500000

2000000

2500000

0

500000

1000000

1500000

1
0

4
0

7
0

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

6
1
0

6
4
0

6
7
0

7
0
0

7
3
0

7
6
0

7
9
0

8
2
0

8
5
0

8
8
0

9
1
0

9
4
0

9
7
0

1
0
0
0

1
0
3
0

0.1*N*N

2*N*N

GRAPH THEORY

• Graphs are very
simple DM objects

• Set of vertices
V = {v , v , …, v }

1

234

V = {v1, v2, …, vN}

• Set of edges
E = {e1, e2, …, eM}

• Each edge ek

links some couple
{vi, vj} of vertices

2

5
6

7

GRAPH THEORY

• Path is a sequence
of vertices, each two
consecutive vertices
linked by an edge

1

234

linked by an edge

• The sequence (5, 4,
1, 2, 7) is a path from
5 to 7

• Number of edges –
length of the path

2

5
6

7

GRAPH THEORY

• Cycle in the graph
is a path, such that
starts and finishes in
a same vertex

1

234

a same vertex

• The sequence (5,
4, 1, 2, 7, 6, 5) is a
cycle

2

5
6

7

GRAPH THEORY

• Graph G(V,E) is
connected if each 2
vertices are con-
nected by a path

1

234

nected by a path

• The graph on the
Figure is connected

• Deleting edges
we could obtain not
connected graph

2

5
6

7

GRAPH THEORY

• Connected graph
G(V,E) without
cycles is called tree
• To turn the graph
on the Figure in tree

1

234• To turn the graph
on the Figure in tree
we have to cut
each cycle.
•After deleting an
edge of a cycle the
graph remains
connected

2

5
6

7

GRAPH THEORY

• A path of minimal
length from vi to vj

among all such pats
is called shortest

1

234

is called shortest
path

• (5, 4, 1, 2, 7) is not a
shortest path from 5
to 7. A shortest path
from 5 to 7 is (5,6,7)

2

5
6

7

ALGORITHMIC SCHEMES

• An algorithmic scheme (AS) is a
procedure very similar to an algorithm but,
in some sense, uncompleted, and so - not
solving any tasksolving any task

• If we have a task for which an algorith-
mic scheme is appropriate, we could
complete the procedure to an algorithm

• Using algorithmic schemes simplify, in
many cases, development of algorithms

ALGORITHMIC SCHEMES

• Very popular AS are:

• Divide and conquer

• Breadth-first traversal of graph

• Breadth-first traversal of graph

• Euler traversal of graph

• Dynamic programming

• Greedy

• Backtracking

ALGORITHMIC SCHEMES

AS Divide and
conquer
• Split the task of size
N to smaller subtasks

N

N N N. . .N to smaller subtasks
of same kind
• Solve subtasks
• Compose solution
from the solutions of
the subtask

N1 N2 Nk. . .

S1 S2 Sk

S1 S2 Sk. . .

. . .

OUR TASK

• For the NO in Math one of the co-authors
– prof. N. Nikolov, leader of Bulgarian
team for IOM, proposed the following (in
following the vertices will be labeled with
1, 2, 3, …)
following the vertices will be labeled with
1, 2, 3, …)

• TASK: A tree D has L vertices of degree 1
(i.e. that are linked to exactly one other
vertex) – 1, 2, …, L. The length lijof the
single path from i to j is given for all i and
j,1 ≤≤≤≤ i < j ≤≤≤≤ L. Reconstruct the tree!

OUR TASK

2 3 1 2 3 4 5 6

1 4 4 5 5 5

2 4 2 5 5 5

1 4 5 6

3 4 2 5 5 5

4 5 5 5 2 2

5 5 5 5 2 2

6 5 5 5 2 2

OUR TASK

• First, let us remark that the length lij of the
shortest path between 2 vertices is a
distance in the usual math sense (like the
Euclidean), because:

Axiom 1: l ≥≥≥≥ 0, ∀∀∀∀ i,j, and l = 0 iff i = j;•Axiom 1: lij ≥≥≥≥ 0, ∀∀∀∀ i,j, and lij = 0 iff i = j;
• Axiom 2: lij = lji, ∀∀∀∀ i and j;
• Axiom 3 (triangle inequality): For ∀∀∀∀ i, j
and k, the inequality lij + ljk ≥≥≥≥ lik
• So, we will call lij a distance between i
and j and will use the existing analogy to
the Euclidean distance

OUR TASK

Lemma. Let D = (V, E) be a tree and i, j
and k be pairwise distinct vertices. There is
a unique vertex x that belongs to the three
pats– from i to j, from j to k, and from i to k.
From the Proof (omitted) follows that:From the Proof (omitted) follows that:

• lix = (lij + lik – ljk)/2, i j

• ljx = (lij + ljk – lik)/2,

• lkx = (lik + ljk – lij)/2.
k

OUR TASK

• We will try the AS Divide and conquer
• Decomposition in subtasks, solving the
subtasks and composition will be done in
parallel

1 6

l16 = 5

2
3

x1

5

x2

4

OUR TASK

Divide and conquer algorithm
• Chose two pending vertices i and j and
build a path of length lij between them
(composition/reconstruction)
• For each k on the path, k ≠ i and k ≠ j, • For each k on the path, k ≠ i and k ≠ j,
• identify (by the Lemma) the vertex x
and the sub-tree Tx rooted in x (splitting
in subtasks)
• solve recursively the task for Tx . Use the
Lemma to find lip, when necessary, for
each pending vertex p (decomposition)

OUR TASK

• Last step in preparation of the task for a
contest, before creating the test cases, is
the estimation of time complexity of the
algorithm
• This is important step, because without • This is important step, because without
the estimation of the complexity is difficult
to choose the size of test cases
• Unfortunately, finding the time complexi-
ty of algorithms for reconstruction of
graphs, and especially of tree by its met-
ric properties could be not easy

OUR TASK

• The usual expectation is that TA(N) is
growing with growing of N
• It is not the same with the considered
task – here the complexity depend too
much of the number M of the inner much of the number M of the inner
vertces

…

L = 10000000000,M=1

…

L = 2,M=10000000000

OUR TASK

• One way to manage the problem is to
ask not reconstruction, but only the num-
’ber of inner vertices (see the algorithm)

• The other is to eliminate the vertices of • The other is to eliminate the vertices of
degree 2. Looking again the algorithm we
could see that these vertices do not
generate subtasks and so – could be
reduced.

OUR TASK

2 32 3

1 4 5 61 4 5 6

2
2

OUR TASK

• Using this simplification we succeed to
estimate the complexity of the algorithm

• It happens that our algorithm, let us call
it MNM make O(L2) steps solving the task it MNM make O(L2) steps solving the task
for three with L pending vertices

• Because the size N of the input of the
task is ΘΘΘΘ(L2), the complexity of our
algorithm is TMNM(N) = O(N) – nice linear
algorithm

OUR TASK

• It is interesting to try to solve the task
when the edges of the tree are weighted
and the length of a path is a sum the
weights of edgesweights of edges

• But it is impossible. Trivial counterexam-
ple is the tree with 2 pending vertices

lij = 5

3

3

2

1 1

i

i

j

j

OUR TASK

• The reason for the impossibility to solve
the task for weighted graphs is again in
the vertices of degree 2.

• Theorem. If the graph is without vertices • Theorem. If the graph is without vertices
of degree 2 than it could be reconstruc-
ted by the distances among the pending
veritces

• The algorithm is practically the same
and its complexity is again linear

CONCLUSIONS

• Task was included un the test set of SEE
Regional contest of ACM ICPC – 10.2010

• 55 teams, 33 of which from traditionally
strong Ukraine, Romania and Bulgariastrong Ukraine, Romania and Bulgaria

• Only 11 teams submitted correct solution
(out of 10 problem - one was not solved
and 1 solved by only 5 teams)

• So, we could classify the difficulty of the
tasks as above the average

CONCLUSIONS

• We try to solve another tasks with the
same approach

• TASK: Let D(V,E) is a weighted tree and
the distances l among all of its vertices. the distances lij among all of its vertices.
Reconstruct the tree.

• Trivial modification MNMW of MNM sol-
ved the problem (solution is in the paper)

• The time complexity of MNMW is again
linear

CONCLUSIONS

• Task was included un the test set of
Bulgarian Autumn tournament, 11.2010, in
the second age group – 16-17 years old

• 53 students from Bulgaria, Croatia, • 53 students from Bulgaria, Croatia,
Greece, Macedonia, Serbia and Romania,

•43 students submitted solution, 15 obtai-
ned at least 70%, and 10 of them – 100%

• So, we could classify the difficulty of the
this tasks as below the average

CONCLUSIONS

• Dependence of the time complexity from a
hidden parameter of the graph make the
first task unattractive

• Some efforts have to be spent during the • Some efforts have to be spent during the
training of contestants in order to be able to
manage tasks with hidden parameters

• Graph reconstruction problems seem to be
a good way to enlarge the scope of the
tasks given at programming contests.

CONCLUSIONS

•Open problem: to reconstruct the tree
from the distances between all vertices
(or between the outer vertices) when it is
not given which distance is between not given which distance is between
which two vertices.

• For solutions of the discussed two
problems this knowledge is crucial.

THANKS FOR YOUR

ATTENTION!ATTENTION!

ANY QUESTIONS?

