
Stimulating students' creativity with tasks solved using precomputation and visualization

Stimulating students' creativity with tasks solved

using precomputation and visualization

Tomasz Kulczy«ski, Jakub �¡cki, Jakub Radoszewski

University of Warsaw

24th July 2011



Stimulating students' creativity with tasks solved using precomputation and visualization

Introduction

Introduction

The usual approaches of solving problems:

making observations,

guessing some properties,

deducing solutions,

. . .

An alternative:

use a computer,

experiment,

visualize,

precompute,

generate data and analyze it.



Stimulating students' creativity with tasks solved using precomputation and visualization

Introduction

Introduction

The usual approaches of solving problems:

making observations,

guessing some properties,

deducing solutions,

. . .

An alternative:

use a computer,

experiment,

visualize,

precompute,

generate data and analyze it.



Stimulating students' creativity with tasks solved using precomputation and visualization

Introduction

1 Introduction

2 Playing games

3 Number sequences

4 Speeding up simulations

5 Combinatorics



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Number game

Two-player game

state: a pair (x , y) of positive integers (x , y ≤ 109)

move

1 a player subtracts 1 from one of the numbers

2 then divides both numbers by their GCD

the player who gets (1, 1) loses the game

(4, 7)→ (2, 3)→ (1, 1)

(4, 7)→ (3, 7)→ (1, 2)→ (1, 1)



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Number game

Two-player game

state: a pair (x , y) of positive integers (x , y ≤ 109)

move

1 a player subtracts 1 from one of the numbers

2 then divides both numbers by their GCD

the player who gets (1, 1) loses the game

(4, 7)→ (2, 3)→ (1, 1)

(4, 7)→ (3, 7)→ (1, 2)→ (1, 1)



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Number game

Two-player game

state: a pair (x , y) of positive integers (x , y ≤ 109)

move

1 a player subtracts 1 from one of the numbers

2 then divides both numbers by their GCD

the player who gets (1, 1) loses the game

(4, 7)→ (2, 3)→ (1, 1)

(4, 7)→ (3, 7)→ (1, 2)→ (1, 1)



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Task

Task

Determine if a given position is winning.

We can implement a simple DP algorithm (running in O(n2 log n))
to solve the problem for i , j ≤ n.



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Task

Task

Determine if a given position is winning.

We can implement a simple DP algorithm (running in O(n2 log n))
to solve the problem for i , j ≤ n.



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Visualization

A cell [i , j ] is white if and only i� position (i , j) is winning.

We conjecture that (i , j) is losing if and only if i and j have the

same parity.



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Visualization

A cell [i , j ] is white if and only i� position (i , j) is winning.
We conjecture that (i , j) is losing if and only if i and j have the

same parity.



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Proof

We prove the claim by induction on i + j .

Base case (i = j = 1) follows from rules. Now assume that the

claim holds for all i ′, j ′, such that i ′ + j ′ < i + j .

1 If both numbers have the same parity, then after the move

they have di�erent parity, so the position is losing.

2 If the parity is di�erent, we subtract 1 from the even number.

Hence, after the move both numbers are odd, so the opponent

faces a losing position.



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Proof

We prove the claim by induction on i + j .

Base case (i = j = 1) follows from rules. Now assume that the

claim holds for all i ′, j ′, such that i ′ + j ′ < i + j .

1 If both numbers have the same parity, then after the move

they have di�erent parity, so the position is losing.

2 If the parity is di�erent, we subtract 1 from the even number.

Hence, after the move both numbers are odd, so the opponent

faces a losing position.



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Proof

We prove the claim by induction on i + j .

Base case (i = j = 1) follows from rules. Now assume that the

claim holds for all i ′, j ′, such that i ′ + j ′ < i + j .

1 If both numbers have the same parity, then after the move

they have di�erent parity, so the position is losing.

2 If the parity is di�erent, we subtract 1 from the even number.

Hence, after the move both numbers are odd, so the opponent

faces a losing position.



Stimulating students' creativity with tasks solved using precomputation and visualization

Playing games

Proof

We prove the claim by induction on i + j .

Base case (i = j = 1) follows from rules. Now assume that the

claim holds for all i ′, j ′, such that i ′ + j ′ < i + j .

1 If both numbers have the same parity, then after the move

they have di�erent parity, so the position is losing.

2 If the parity is di�erent, we subtract 1 from the even number.

Hence, after the move both numbers are odd, so the opponent

faces a losing position.



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Antiprime numbers

An antiprime number is a positive integer for which
the number of divisors increases to a record.

First few elements of the sequence are

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180.

Task (8th POI)

Compute the greatest antiprime which is lower than c (c ≤ 2 · 109).



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Antiprime numbers

An antiprime number is a positive integer for which
the number of divisors increases to a record.

First few elements of the sequence are

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180.

Task (8th POI)

Compute the greatest antiprime which is lower than c (c ≤ 2 · 109).



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Antiprime numbers

An antiprime number is a positive integer for which
the number of divisors increases to a record.

First few elements of the sequence are

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180.

Task (8th POI)

Compute the greatest antiprime which is lower than c (c ≤ 2 · 109).



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Precomputation

Ine�cient solution:

We iterate over consecutive positive integers ≤ M and count

their divisors.

This requires O(M
√
M) time.

Using Eratosthenes' sieve, one can improve the complexity to

O(M logM) time.

We discover that for M = 106 there are only 38 antiprimes.



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Precomputation

Ine�cient solution:

We iterate over consecutive positive integers ≤ M and count

their divisors.

This requires O(M
√
M) time.

Using Eratosthenes' sieve, one can improve the complexity to

O(M logM) time.

We discover that for M = 106 there are only 38 antiprimes.



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Solution

A possible solution:

1 Implement the O(M logM) solution.

2 Run it for M = 2 · 109.
3 Wait.

4 Hardcode the result into the program.



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Possible improvements

The algorithm can be improved signi�cantly.

If n = 2w1 · 3w2 · 5w3 · 7w4 · . . . then n has

(w1 + 1)(w2 + 1)(w3 + 1)(w4 + 1) . . . divisors.

We can only consider those numbers, where

w1 ≥ w2 ≥ w3 ≥ . . ..



Stimulating students' creativity with tasks solved using precomputation and visualization

Number sequences

Possible improvements

The algorithm can be improved signi�cantly.

If n = 2w1 · 3w2 · 5w3 · 7w4 · . . . then n has

(w1 + 1)(w2 + 1)(w3 + 1)(w4 + 1) . . . divisors.

We can only consider those numbers, where

w1 ≥ w2 ≥ w3 ≥ . . ..



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Problem: A squirrel in a plane (ONTAK 2007)

Setting:

in�nite plane with n ≤ 7 nuts,

nuts placed at points (xi , yi ) −2 ≤ xi , yi ≤ 2,

a squirrel (initially at (0, 0), facing north) collecting nuts.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Problem statement

Squirrel's moves:

If it stands on a nut, then it

picks it up,

turns 90◦ right,

moves 1 unit ahead.

Otherwise, it

drops a nut,

turns 90◦ left,

moves 1 unit ahead.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Task

Task

Compute the number of nuts after t ≤ 109 moves.

We simulate several thousand steps of the squirrel for di�erent

inputs.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Task

Task

Compute the number of nuts after t ≤ 109 moves.

We simulate several thousand steps of the squirrel for di�erent

inputs.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Conclusions

Observations:

The squirrel repeats a sequence of 104 moves,

during which 12 nuts are put on the ground.

The cycle starts close to the origin.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Solution

We simulate the moves of the squirrel.

The simulation stops after x moves if the squirrel

has reached the distance of 200 units from the origin and

t − x is divisible by 104.

We output the current number of nuts + t−x
104
· 12.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Correctness

How do we know if it is correct?

Well, we can check all 726 206 initial con�gurations.



Stimulating students' creativity with tasks solved using precomputation and visualization

Speeding up simulations

Correctness

How do we know if it is correct?

Well, we can check all 726 206 initial con�gurations.



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

Stirling numbers of the second kind

{
n

m

}
= number of partitions of {1, 2, . . . , n} into m nonempty sets.

E.g.
{
4
2

}
= 7:

{1, 2, 3} ∪ {4} {1, 2, 4} ∪ {3} {1, 3, 4} ∪ {2} {2, 3, 4} ∪ {1}

{1, 2} ∪ {3, 4} {1, 3} ∪ {2, 4} {1, 4} ∪ {2, 3}



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

Stirling numbers of the second kind

{
n

m

}
= number of partitions of {1, 2, . . . , n} into m nonempty sets.

E.g.
{
4
2

}
= 7:

{1, 2, 3} ∪ {4} {1, 2, 4} ∪ {3} {1, 3, 4} ∪ {2} {2, 3, 4} ∪ {1}

{1, 2} ∪ {3, 4} {1, 3} ∪ {2, 4} {1, 4} ∪ {2, 3}



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

Problem description

Problem (ACM ICPC SWERC 2001)

Knowing that:

{
n

m

}
=


0 if n = m = 0

1 if n = 0 ∧m > 0 or m = 0 ∧ n > 0

m
{
n−1
m

}
+
{
n−1
m−1

}
if n > 0 ∧m > 0

compute
{
n
m

}
mod 2 for 0 ≤ m ≤ n ≤ 109.



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

a[x ][y ] =
{
x
y

}
mod 2

We have a[x ][y ] = b[x ][y ].



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

a[x ][y ] =
{
x
y

}
mod 2 b[x ][y ] = 1 ⇐⇒ x&y = 0

We have a[x ][y ] = b[x ][y ].



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

a[x ][y − 1] =
{
x
y

}
mod 2 b[x ][y ] = 1 ⇐⇒ x&y = 0

We have a[x ][y ] = b[x ][y ].



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

a[x − y ][y − 1] =
{
x
y

}
mod 2 b[x ][y ] = 1 ⇐⇒ x&y = 0

We have a[x ][y ] = b[x ][y ].



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

a[x − y ][b y−1
2
c] =

{
x
y

}
mod 2 b[x ][y ] = 1 ⇐⇒ x&y = 0

We have a[x ][y ] = b[x ][y ].



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

a[x − y ][b y−1
2
c] =

{
x
y

}
mod 2 b[x ][y ] = 1 ⇐⇒ x&y = 0

We have a[x ][y ] = b[x ][y ].



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

Conclusions

From

a[x − y ][b y−1
2
c] =

{
x
y

}
mod 2,

b[x ][y ] = 1 ⇐⇒ x&y = 0,

a[x ][y ] = b[x ][y ]

we get {
x

y

}
mod 2 =

(
(x − y) &

⌊
y − 1

2

⌋)
== 0.



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

Conclusions

From

a[x − y ][b y−1
2
c] =

{
x
y

}
mod 2,

b[x ][y ] = 1 ⇐⇒ x&y = 0,

a[x ][y ] = b[x ][y ]

we get {
x

y

}
mod 2 =

(
(x − y) &

⌊
y − 1

2

⌋)
== 0.



Stimulating students' creativity with tasks solved using precomputation and visualization

Combinatorics

Summary

Solving tasks with a computer can:

provide a deeper understanding for the student,

develop engineering skills,

stimulate creativity,

teach students an alternative way of approaching problems,

result in �nding a better solution.


	Introduction
	Playing games
	Number sequences
	Speeding up simulations
	Combinatorics

