
Painting	Squares	(squares)
Mike	 is	 playing	 a	 game	 with	 Peter.	 There	 are	 	 squares	 drawn	 on	 the	 ground	 in	 a	 single	 row,
numbered	 	 to	 	 from	 left	 to	 right.	At	 the	start	of	 the	game,	Peter	 is	allowed	 to	paint	each	of
these	squares	either	black	or	white.	He	will	then	give	Mike	a	single	positive	integer	 	().

This	game	lasts	a	total	of	 	rounds.	In	each	round,	Mike	will	randomly	pick	a	square	 	(),
and	 tell	Peter	 the	 colours	 of	 the	 squares	 from	positions	 	 to	 	 inclusive.	 If	 any	of	 these
positions	are	out	of	range,	Mike	will	inform	Peter	accordingly	as	well.	Peter	will	then	need	to	correctly
deduce	 	based	purely	on	this	information	alone.

Peter	wishes	to	impress	Mike,	and	thus	wants	to	pick	a	value	of	 	that	is	as	low	as	possible.	Help
Peter	devise	a	strategy	to	win	this	game	with	the	minimum	possible	value	of	 .

Implementation	details

You	should	implement	the	following	procedures:

​int[]	paint(int	n)​

:	number	of	squares.
This	procedure	should	return	a	single	array	of	size	 .	The	first	 	elements	of	the	array	will
be	 the	colours	of	 the	 	squares.	The	 -th	element	of	 the	array	should	be	set	 to	 	 if	 the	 -th
square	is	to	be	painted	white,	or	 	if	it	is	to	be	painted	black.	The	last	element	of	the	array	will
be	the	value	of	 .
This	 procedure	 will	 be	 called	 exactly	 once	 for	 each	 scenario,	 before	 any	 calls	 to
find_location.

​int	find_location(int	n,	int	c[])​

:	number	of	squares.
:	an	array	of	size	 .	The	 -th	element	of	the	array	is	set	to	 	if	the	()-th	square	is	painted

white,	or	 	if	it	is	painted	black.	If	the	()-th	square	does	not	exist,	the	 -th	element	of	the
array	will	be	set	to	 .
This	procedure	should	return	the	deduced	value	of	 .
This	procedure	will	be	called	exactly	 	times	for	each	scenario,	once	for	each	round.

Each	 test	 case	may	 involve	multiple	 independent	scenarios	 (i.e.,	different	 values	of).	For	a	 test
case	involving	 	scenarios,	a	program	that	calls	the	above	procedures	is	run	exactly	two	times,	as

Squares (1 of 3)

follows.

During	the	first	run	of	the	program:

paint	procedure	is	called	 	times,
the	returned	colours	and	value	of	 	are	stored	by	the	grading	system,	and
find_location	is	not	called.

During	the	second	run	of	the	program:

find_location	may	be	called	multiple	times,
the	value	of	 	and	colours	given	to	each	call	to	find_location	are	those	produced	by	a	call
to	paint	for	an	arbitrarily	chosen	scenario	from	the	first	run,
paint	is	not	called.

Example

Consider	the	following	call:

​paint(5)​

There	are	a	 total	of	 	 squares.	Peter	may	choose	 to	paint	 the	squares	black,	black,	white,	black,
white	in	that	order,	and	decides	that	 	would	be	sufficient	for	him	to	deduce	the	value	of	 .	In
that	case,	the	procedure	should	return	[,	 ,	 ,	 ,	 ,].

Several	calls	would	then	be	made	to	find_location.

Consider	a	possible	call:

find_location(5,	[0,	1,	0])

This	means	that	the	colour	of	the	 -th,	 -th	and	 -th	squares	are	black,	white	and	black
respectively.	Peter	could	deduce	from	this	that	 .	Therefore,	the	procedure	should	return	 .

Consider	another	possible	call:

find_location(5,	[1,	0,	1])

This	means	that	the	colour	of	the	 -th,	 -th	and	 -th	squares	are	white,	black	and	white
respectively.	Peter	could	deduce	from	this	that	 .	Therefore,	the	procedure	should	return	 .

Constraints

	()

Squares (2 of 3)

Subtasks

1.	 (10	points)	The	value	of	 	returned	by	paint	can	be	no	greater	than	 .
2.	 (15	points)	The	value	of	 	returned	by	paint	can	be	no	greater	than	 .
3.	 (20	points)	The	value	of	 	returned	by	paint	can	be	no	greater	than	 .
4.	 (55	points)	The	value	of	 	returned	by	paint	can	be	no	greater	than	 .

In	subtask	4	you	can	obtain	a	partial	score.	Let	 	be	the	maximum	value	of	 	returned	by	paint
across	all	scenarios.	Your	score	for	this	subtask	is	calculated	according	to	the	following	table:

Maximum	value	of	 Score

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	

	blocks	follow,	each	describing	a	single	scenario.	The	format	of	each	block	is	as	follows:

line	 :	
line	 	():	the	value	of	 	for	the	 -th	call	to	find_location.

The	sample	grader	prints	in	the	following	format:

line	 :	

	blocks	corresponding	to	the	consecutive	scenarios	in	the	input	follow.	The	format	of	each	block	is
as	follows:

line	 	 ():	 the	 deduced	 value	 of	 	 returned	 by	 the	 -th	 call	 to
find_location.

Note	that	each	run	of	the	sample	grader	calls	both	paint	and	find_location.

Squares (3 of 3)

