
Olympiads in Informatics, 2017, Vol. 11, 55–75
© 2017 IOI, Vilnius University
DOI: 10.15388/ioi.2017.05

55

Improving Teaching and Learning
Computer Programming in Schools
through Educational Software

Metodija JANCHESKI
University Ss. Cyril and Methodius
Faculty of Computer Science and Engineering
Rudzer Boshkovikj street, 16, 1000 Skopje, Macedonia
e-mail: metodija.jancheski@finki.ukim.mk, meto@ii.edu.mk

Abstract. Computer programming is the universal language of our planet and a basic literacy in
the digital age. There is no doubt that learning computer programming at a young age is helpful
for all students at least in their everyday life. The benefits of learning programming help young
students to gain advantages in thinking, processing and communication. These benefits can sup-
port acquiring, developing and improving the 21st-century skills among youth.

One of the main challenges of scientists and educational practitioners in the field is how to
make computer programming attractive and interesting for the students in primary and secondary
schools. The use of various educational software could have positive impact on this issue.

There are many successful examples of educational software used in schools. This paper em-
phasizes the usefulness of Scratch, Logo, ToolKid and other similar education software tools
in teaching and learning computer programming fundamentals. Some of the most important
features of such tools, including immediate feedback (instant positive reinforcement), visually,
block-based, text-based and object-oriented programming are explained in details.

The author presents several practical examples of how the educational software tools men-
tioned above can improve teaching and learning computer programming.

Keywords: computer programming, Scratch, Logo, ToolKid, computational thinking.

1. Introduction

The first steps in computer programming are very important. Older generations were
taught the languages like Basic, Fortran, and Pascal and gradually move on to C lan-
guage. But these programming languages require knowledge of well symbolic expres-
sion through mathematical and logical expressions. When children jump straight into
a traditional programming language, they get bored and discouraged, because one of
the biggest obstacles in learning a programming language is learning the syntax of the
language (Vlieg, 2016). Therefore, programming has handled older students in primary

M. Jancheski 56

education. The modern computer languages, like Python, Delphi, C++, C# and Java,
also require similar level of previous knowledge.

It was expected the appearance of new visual programming languages, including
Visual Basic and Visual C to make easier the process of programming. Unfortunately,
it turned out that they are not suitable for young programmers.

In today’s digital world, coding is a fundamental skill alongside math and reading,
but too few kids have the opportunity to learn to program because it is rarely taught in
school (Tynker…, 2017). Today, at the time of the graphic interfaces and multimedia it
is also hard for young programmer to work in text mode.

For a long time, the opinion prevailed that programming is necessary only for gifted
math students and to those who will continue to deal with programming as their further
profession. Fortunately, some leading scientists, inventors and educators recognize the
benefits of programming for all students. They were aware that programming drives in-
novations, leading to success in other life areas. According Nicholas Negroponte from
One Laptop Per Child Project (Sande, Sande, 2014):

“Computer programming is a powerful tool for children ‘to learn
learning.’ … Children who engage in programming transfer that kind
of learning to other things”.

In the same spirit, Dan Shapiro, Robot Turtles inventor said (Gardner, 2014):

“Being able to program will make children better at whatever they
do... No matter what you do, programming unlock doors for you,
helps you express yourself, and helps you become more successful in
anything you decide to do”.

Follows the chronological list of some notable programming languages with the
year of development given in the brackets: Fortran (1957), Lisp (1958), Basic (1964),
Logo (1968), Pascal (1970), C (1972), C++ (1980), Python (1991), Visual Basic (1991),
Java (1995), JavaScript (1995), Delphi (1995), C# (2001), and Scratch (2003).

Before appearance of Scratch in 2003, as mentioned above, it was generally accept-
ed that the first programming language for young programmers should be the language
Logo. Because of its simplicity and features for quickly getting the effective graphical
results, Logo gained great popularity in schools worldwide. Compared with Logo, the
new programming language Scratch goes one step further in terms of simplicity, attrac-
tiveness and visual programming.

The question then arises as to what is the most appropriate age to start learn text-
based programming languages, including Logo. The same applies to visual program-
ming languages like Scratch. There is a continuous debate on these issues and we are
witnessing various solutions worldwide. There are also many unanswered questions
including whether students should learn to code in elementary schools and whether
computer programming need be introduced to everyone in primary and secondary edu-
cation or it should be optional.

First, there are examples where students aged eight learn text-based programming
languages. Considering only the abovementioned fact that learning the syntax of the

Improving Teaching and Learning Computer Programming in Schools ... 57

language is one of the main obstacles, this approach demands high level of patience
and adaptation of teachers.

On the other side, even the major universities use visual programming languages
like Scratch in the introductory computer science subjects. According analysis done
by Philip Guo in July 2014, University of California Berkeley, University of Wis-
consin Madison and Brown University teach either CS0 or CS1 using the Scratch
(Guo, 2014).

Finally, considering the importance of the programming as one of the most valued
21st century’s skills, the main challenge is how to enable the kids to start program-
ming before they can read. Generally accepted opinion is that programming is best
learned early (Tynker…, 2017), which is also true for learning foreign languages. In
other words, no age is too early to learn programming, or ‘the earlier, the better’. It is
clear that learning while sitting in front of a computer for a long time is not a proper
solution for young students. Short interactive multimedia applications were proved as
an alternative approach that offers easier entry into programming (Ghose, 2016). This
approach includes visual programming languages and educational games.

Andrew J. Ko, a researcher at the Information School at the University of Washing-
ton believes that the age of ten is crucial for learning programming languages. He said
(Ghose, 2016):

“Once kids are about 10 years old, they may be able to work with
coding languages on a computer. Right around that age, children
develop a more sophisticated theory of mind and are able to predict
what others are thinking and feeling – which also means they are
able to make models of what their snippets of code will produce”.

The issues related to select which programming languages to teach, when and in
what order remains to be decided by the educational experts, scientists and practitio-
ners, as well as, educational institutions, in accordance with their educational strategies
and politics and the best practices worldwide.

The Table 1 is not finished. It should be completed with other “serious” programming
languages for higher students’ ages. According the author, the suggested next steps after
the young programmers are mastering Scratch programming language is programming
with Logo, Python, Perl or Delphi, to reach the final phase, i.e. programming in C++
and C#, as a programming languages for professionals. In this spite, it is useful to re-
view other findings from the abovementioned data analysis. For each university, Philip
Guo looked for CS0 and CS1 courses in the CS, CSE, or EECS department. Follows the
results of his analysis: Python (27), Java (22), MATLAB (8), C (7), C++ (6), Scheme
(5), Scratch (3). Obviously, Python was the most popular language (80% of the top 10
CS departments, and 69% of the top 39 CS departments) for teaching introductory com-
puter science courses at top-ranked U.S. Computer Science departments in 2014. Note
that Scratch was the only visual programming language that made this list.

Computer programming is a great intellectual hobby; it provides the same opportu-
nity for creative, concrete work in mathematical thinking that drama or creative writing
does for verbal thinking (Harvey, 1997). It is very important to ensure kids to have fun

M. Jancheski 58

while they learn, so they stay engaged and continue learning and creating. Nowadays,
there is no doubt that programming allows kids to be creative and helps the self-con-
fidence building and developing among them. Programming improves mathematical
skills in a fun way. It teaches problem-solving skills and helps kids visualize abstract
concepts (Tynker…, 2017).

2. Scratch

2.1. What is Scratch?

Scratch is a block-based imperative, event-driven, dynamically-typed (whether data
types agree is checked during program execution) and interpreted programming lan-

Table 1
Programming languages with recommended age and short description

Programming
language/game
(recommended age)

Short description / Educational value

BeeBot
(1+)

A simple, real-world toy that can teach kids the basics of coding. It uses simple left-
and right-buttons on the robot, and kids should learn how to sequence their commands
to get the BeeBot from one end of the room to the other, avoiding obstacles along the
way (Ghose, 2016).

Robot Turtles
(4+)

An actual, physical board game that surreptitiously teaches kids the basics of
programming. The game teaches kids how to use directions to navigate their turtles
through a maze to a tasty jewel (Ghose, 2016).

Light Bot
(4–8)

An iPhone or Android app that teaches kids to navigate a robot through a maze, turning
on lights.

Dash & Dot
(5+)

A programmable robot pack that may be the best for slightly older kids, around age 8,
who are already excited about programming (Ghose, 2016).

ScratchJr
(5–7)

The free Android or iPhone app which allows kids to use simple icons to code their own
interactive stories and games (Ghose, 2016).

The Foos
(5–10)

The free iPhone application that uses simple icons with symbols, such as monsters,
arrows and speech bubbles to solve adventures like chasing down a donkey thief or
rescuing puppies lost in space. Kids can learn the basics in an hour (Ghose, 2016).

Tynker interactive
courses
(7+)

Tynker is an online platform that easily and successfully teaches students how to code
through games and stories. Students learn the fundamentals of programming and design
through Tynker’s intuitive visual programming language (Tynker…, 2017).

Scratch
(8 – 16)

Scratch is a simple coding language, completely free and open to use. It gets kids
exposed to fundamental coding concepts, such as repeating loops and if-then statements
using bright, color-blocked textual commands (Ghose, 2016).

Lego Mindstorms
(10+)

Lego Mindstorm combines the LEGOs with motors, sensors and remote controls. With
Mindstorms, young students can build robots that walk, talk and do as they command
(Fichtner, 2014).

Improving Teaching and Learning Computer Programming in Schools ... 59

guage*. As a tool that offers “programming without proper programming”, Scratch is
simple and clear programming language. It is also object oriented, visual programming
tool which does not require any prior programming knowledge and experience. Scratch
provides a rich learning environment for people of all ages (Marji, 2014).

With this programming language young programmers can program (create) their
own computer games, interactive stories, animations, simulations and other multimedia
projects and then to share their creations online (Marji, 2014; Honey and Kanter, 2013;
Pollock, 2014; Ford, 2009). Moreover, the Scratch website enable young people from
around the world to learn from each other, to get and give feedback, to share interactive
tutorials, guided tours, science experiments, book reports, online newsletters, and much
more (Vlieg, 2016; Pollock, 2014).

This 14 years old programming language is available in more than 40 languages
and used in more than 150 countries (Vlieg, 2016; Scratch…, 2017). More tinkerable,
more meaningful and more social than other programming environments are the three
core design principles established for Scratch (Vlieg, 2016). Creating with Scratch
also encourages students to learn to think creatively, work collaboratively, and reason
systematically – essential skills for success and happiness in today’s world (Vlieg, 2016;
Pollock, 2014). The main motto of the Scratch project is: Imagine, Program, Share.

Block programming with Scratch is relatively easy, even for young children, and
it’s a good way to enter the world of programming. With Scratch, young programmers
easily understand the basic concepts of programming in a very effective and fun way.
It has been used to introduce important computational concepts such as repeat loops,
conditional statements, variables, lists, data types, events, and processes to students
of many different ages, from elementary schools through universities (Vlieg, 2016).
Scratch also enable students to learn important mathematical concepts and terms,
including coordinates, variables, and random numbers. After learning Scratch, transition
to traditional text-based languages can be done more easily (Vlieg, 2016).

According M. Resnick, one of the founders of Scratch software (Pollock, 2014),

“Scratch is more than a piece of software. It is part of a broader edu-
cational mission. We designed Scratch to help young people prepare
for life in today’s fast-changing society”.

Developed by the MIT Media Lab’s Lifelong Kindergarten Group, Scratch was
conceived as an educational language that would make programming fun and accessible
to a new generation. The researchers at this Group believed that it was very important
for all children, from all backgrounds, to grow up knowing how to design, create,
and express themselves. Inspired by how kindergarteners learn through a process of
experimenting, creating, designing, and exploring, the Lifelong Kindergarten Group
extended this style of learning to programming in general and Scratch in particular.
The primary goal of the Scratch initiative was not to prepare people for careers as
professional programmers but to nurture a new generation of creative, systematic
thinkers comfortable using programming to express their ideas. When you learn to code
in Scratch, you learn important strategies for solving problems, designing projects, and
communicating ideas (Vlieg, 2016).

* https://wiki.scratch.mit.edu/wiki/Scratch_Wiki_Home

M. Jancheski 60

2.2. How Scratch Works?

After launching Scratch, the students can start trying things right away. There is a
default character (the Scratch cat), which already has some media to play with: two
images that form a walking animation, and a “meow” sound. The students can start pro-
gramming behaviors for the cat immediately: click the move block and the cat moves;
click the next costume block and the cat animates; click the play sound block and the
cat meows. The blocks start with reasonable default values for their inputs, so the user
don’t need to fill in any inputs (Honey and Kanter, 2013).

Scratch uses graphical blocks (puzzle-piece shapes) of code to represent program-
ming commands. Instead of typing commands, a student can create Scratch program
(project) by dragging, dropping and snapping graphical blocks of code into different
sequences and combinations (stacks, scripts), much like snapping Lego bricks togeth-
er (Vlieg, 2016; Honey and Kanter, 2013). The connectors on the blocks suggest how
they should be put together (Vlieg, 2016). While pulling blocks from the palette, it is
immediately obvious, from the shapes of the blocks, which blocks can relate to one
another.

Unlike traditional text-based programming languages, there is no syntax to learn
and the Scratch programmers are relieved from all worries about the syntax. Instead,
the grammar is visual, indicated by the shapes of the blocks and connectors. Blocks
snap together only if the combination makes sense (Honey and Kanter, 2013).

From a collection of simple programming blocks, combined with images and
sounds, young students can create a wide variety of different types of projects. While
creating Scratch projects, they typically engage in an extended tinkering process – cre-
ating programming scripts and costumes for each sprite, testing them out to see if they
behave as expected, then revising and adapting them, repeatedly. Scratch has a range of
features that allow programs monitoring as they run. Scratch scripts always highlight
while they are running, so the students can see which code is being triggered when
(Honey and Kanter, 2013).

2.3. The Main Benefits and Advantages of Using Scratch

The initial objective of the Scratch project was to encourage creativity, imagination and
curiosity among the young students. The ultimate goal is to develop a shared commu-
nity and culture around Scratch (Vlieg, 2016).

Scratch’s visual programming environment enables students to explore areas of
knowledge that would otherwise be inaccessible. It provides a full set of multimedia
tools that can be used for creating wonderful applications, which can be done more eas-
ily than with other programming languages (Marji, 2014).

The greatest benefit of using Scratch is disclosure the interest in programming
among young computer users. Today, understanding and mastery the complex machines

Improving Teaching and Learning Computer Programming in Schools ... 61

like personal computers requires several years of work and learning. It is therefore very
important to provide an opportunity for learning programming in an easy and under-
standable way.

One of the things that are crucial to attract and excite young developers is the feel-
ing of ruling with animation on the computer screen. Commands for graphics manage-
ment in Scratch are extremely powerful. Scratch variables can be used to manage a
variety of graphics and sound effects. Therefore, it is not surprising that many people
recognize Scratch as a “tool to create simple multimedia”. Although Scratch is a pro-
gramming language for novices, it is highly oriented to graphics, sound effects and
animations.

With Scratch and its code blocks, the students can control and mix graphics, anima-
tions, music, and sound to create interactive stories, games, simulations, art, and anima-
tions and even share their creations with others in the online community (Vlieg, 2016).
One of the main advantages of Scratch is that operation of simpler program modules is
much better understood graphically rather than textually.

Scratch is an excellent programming language for beginners as it allows creating
very attractive programs even at the first acquaintance with the programming. It intro-
duces a quite simple philosophy, thanks to which anyone can almost immediately cre-
ate their first interactive game, a cute animation or some other vivid creation. Looking
like with ease mastered the computer, the young programmer encourages himself for
further work. We should put an emphasis on perfecting the developer technique, and
on the control over the program, and not on the animation effects. The advantage of
Scratch is that its programs are displayed graphically: the scripts are complex, con-
sisted of colorful blocks. Thanks to this, it is easy to understand how and what they
work while the syntax errors (misspelled commands) are disabled. The other thing
that Scratch supports is the immediate feedback which is high valuable for young
students.

In many ways, Scratch promotes problem-solving skills – important in all areas
of life, not just programming. The environment provides immediate feedback, allow-
ing you to check your logic quickly and easily. The visual structure makes it a simple
matter to trace the flow of your programs and refine your way of thinking. In essence,
Scratch makes the ideas of computer science accessible. It makes learning intrinsically
motivating; fosters the pursuit of knowledge; and encourages hands-on, self-directed
learning through exploration and discovery. The barriers to entry are very low, while
the ceiling is limited only by your creativity and imagination (Marji, 2014).

2.4. Disadvantages of Scratch

The possibilities of Scratch for solving mathematical and logical problems are modest.
Due to lack of commands, like Input and Read, Scratch will not provide more than an
effective animation. Also Scratch will not teach about modern techniques of program-
ming, so it is necessary to continue with learning other programming languages.

M. Jancheski 62

3. Logo

Logo is a complex text-based educational programming language. It was designed in
1967 as a tool for learning – about computer programming, but also about other do-
mains – mathematics, language, art, music… (Logo…, 2017).

Many believe Logo language is a language of children. Strictly speaking, the Logo
language is also suitable for children. Others feel that the Logo is used for drawing the
figures, it is also true. But most important is that the Logo is a language suitable for
solving wide range of tasks of programming (Дичева et al., 1996).

Logo is a dialect of Lisp, the language used in the most advanced research projects
in computer science, and especially for solving tasks in the field of artificial intelli-
gence. It was developed by artificial intelligence researchers. Their idea was to see if
they could use some of their experience with the problem of trying to get computers
to think in order to help human beings learn to think more effectively – at least about
certain kinds of problems. Since 1984, Logo is no longer the only member of the Lisp
family available for home computers. Another dialect, Scheme, has become popular in
education (Harvey, 1997).

In contrast to earlier programming languages, which emphasized arithmetic com-
putation, Logo was designed to manipulate language – words and sentences. Like any
programming language, Logo is a general-purpose tool that can be approached in many
ways. Logo programming can be understood at different levels of sophistication (Har-
vey, 1997).

Initially, the software was used in grades 6 to 8 and was mostly valued for its ani-
mation and turtle graphics. Everyday work gave the teachers a deeper understanding of
Logo and confidence in using the program. This change the initial notion of Logo as a
“kid’s language”. Logo is increasingly used at the high school level and more and more
teachers consider Logo a suitable instrument for their own work. Informatics teachers,
sometimes with the help of students, create Logo-projects that serve as small-scale
learning programs (Papert, 1999).

When computer classes were initiated in elementary schools, the teachers noticed
that even young children can create complex and interesting programs despite the fact

Table 2
The most common Logo commands

Type of commands The commands

Moving commands FORWARD (FD), BACK (BK), RIGHT (RT), LEFT (LT), HIDETURTLE (HT),
SHOWTURTLE (ST).

Navigation (position)
commands

HOME, SETX, SETY, SETXY, SETPOS.

Color commands SETPENCOLOR (SETPC), SETBACKGROUND (SETBG), SETFILLCOLOR
(SETFC), SETFILLMODE, SETFILLPATTERN (SETFP), PENREVERSE (PX).

Drawing commands CLEARSCREEN (CS), PENDOWN (PD), PENUP (PU), SETPЕNWIDTH
(SETPW), SETPATTERN, PENERASE (PE), SHOW PEN, SHOW PENSTATE

Improving Teaching and Learning Computer Programming in Schools ... 63

that they have not yet learned what “structured programming” is. It has become widely
accepted that Logo is the program of choice for introducing primary schools’ students
to computers (Papert, 1999).

Logo should not be perceived as a mere technological tool, but as and innovative
approach that encourages individuality and autonomy (Papert, 1999).

Logo language is widespread. It has some rich graphical capabilities. It’s most
known feature is the turtle (or small triangle) which movement can be easily managed
(Дичева et al., 1996).

The Fig. 1 present some Logo windows.
The major role of Logo in schools, can be described as follows:

Students learn Logo for learning’s sake. ●
Students study the basics of algorithms and programming. Logo is used as either ●
the major environment for programming or as an example of a programming
language. In elementary schools the goal might be phrased more modestly as
“cognitive development”.

 a) Selection of the angle of spinning. b) Properties of the “new” turtle.

 c) Selection of the favourite image. d) Three active “turtles”.

Fig. 1. Logo windows.

M. Jancheski 64

Logo is used to convince students that a computer is a convenient instrument for ●
everyday work. Students create projects on elected themes and for other school
subjects (Papert, 1999).

The Fig. 2 presents several geometric shapes drawn with the Logo tools, accompa-
nied by a list of commands used for their drawing.

4. ToolKid

The ToolKid software, based on Commenius Logo is used in all primary schools of
Macedonia (K4) since 2006. Macedonian version of this software was updated, ex-
panded and adapted from Bulgarian version. Relevant curricula were developed and the
software was installed in primary schools. Licenses for the introduction of this software
were purchased by E-School Project. The Primary Education Project continue with Tool-
Kid implementation and development where the E-School Project ended. Nowadays, the
teachers are obliged to use ToolKid software during 30% of their regular classes.

This software did not pretend to change the existing tools, methods and techniques,
recently used in the education, but its primary objective was to complement them, while
enabling teachers and students to work in a new environment, providing plenty of op-
portunities, which offer new ways for answering the placed requests (Jancheski, 2016).

The ToolKID educational software could be useful in all subjects of K-4 educa-
tion (mother tongue, mathematics, nature and society, society, art education and music
education). Its organization is such that enables students to acquire solid informatics
literacy and culture. The primary education is the right place where the students need

RT 900
FD 300

REPEAT [LT 900 FD 300]

RT 900

FD 200
REPEAT [LT 1200 FD 200]

RT 900
FD 150

REPEAT 5[LT 600, FD 150]

REPEAT 13 [FD 10, RT 100]

Fig. 5. Some geometric shapes in Logo

4. ToolKid

The ToolKid software, based on Commenius Logo is used in all primary schools of
Macedonia (K4) since 2006. Macedonian version of this software was updated,
expanded and adapted from Bulgarian version. Relevant curricula were developed and
the software was installed in primary schools. Licenses for the introduction of this
software were purchased by E-School Project. The Primary Education Project continue
with ToolKid implementation and development where the E-School Project ended.
Nowadays, the teachers are obliged to use ToolKid software during 30% of their
regular classes.

This software did not pretend to change the existing tools, methods and techniques,
recently used in the education, but its primary objective was to complement them,
while enabling teachers and students to work in a new environment, providing plenty
of opportunities, which offer new ways for answering the placed requests (Jancheski,
2016).

The ToolKID educational software could be useful in all subjects of K-4 education
(mother tongue, mathematics, nature and society, society, art education and music
education). Its organization is such that enables students to acquire solid informatics
literacy and culture. The primary education is the right place where the students need to

Fig. 2. Some geometric shapes in Logo.

Improving Teaching and Learning Computer Programming in Schools ... 65

to obtain basic informatics knowledge. The curriculum needs to follow the informatics
knowledge trends and to be redesigned in compliance with them (Jancheski, 2016).

The software package ToolKID contains 48 programs divided in 7 groups: Edu-
cational games, Drawing programs, Text programs, Sound programs, Animation and
Video, Data Combining, Algorithms and Programming. These groups are presented in
the main screen with images giving hints about the type of the programs included in
them (Fig. 3).

The resources created with one program, like backgrounds, animation, images,
sounds can be used in other in native and easy way by children. It is important and
creative for them when they are going to work on different project topics.

The group Algorithms (Fig. 4) collects programs that develop the algorithm think-
ing (Pouring, At the river, Towers, Paths), mathematical knowledge (Figures, how many
they are?) and lead to the world of the turtle geometry (Labyrinth).

Fig. 3. Seven groups of Logo programs.

Fig. 4. Algorithms.

M. Jancheski 66

4.1. Advanced ToolKid Usage

ToolKid programs are designed for different class grades and they share common re-
sources. The students can use certain ToolKid programs to create various multimedia
files, which can be further shared by other ToolKID programs, or even to be used out-
side ToolKid environment. The modular structure of ToolKid will hopefully meet the
requirements for usability at different age and different level of programming knowl-
edge and skills.

The ToolKid software, especially the Teacher module, offers a variety of options for
software development and new programs creation. By using Teacher Module, teachers
can change various settings in each of the following programs: Silhouettes, Cat, Pie,
Cards, Puzzles, Color, Painter, Music, Gossip, Clouds, Rebus, Notebook, and ABC.
Teacher module allows teachers to share with their students these settings and other
resources. This could contribute individual approach to different target groups or indi-
viduals and to improve active learning methods, including problem based learning, and
project based learning. ToolKid also enables students to use the local PC resources, as
well as, external multimedia files available on Internet (Jancheski, 2016).

4.2. Contribution of ToolKid Software in Teaching and Learning
Computer Programming

Unfortunately, all of the above described programs, except ToolKid, are not a part of
the regular curriculum in primary schools in the country. They can be used during extra
work with gifted students who have an affinity for informatics and programming.

As stated above, TulKid programs are important in acquiring the contents of several
school subjects. The main objectives of ToolKid software usage include:

Acquiring the basic informatics literacy to the level of solving simple problems. ●
Attaining a part of the curricula objectives for particular subjects by using infor- ●
mation technology.
Acquiring and developing logical and creative capabilities. ●
Developing the regular attitude toward both computers and its programs using ●
and protection.

ToolKid is not a typical software for teaching and learning programming, as Scratch
and Logo, but it is very effective to be used as a preparation for programming.

In order to program specific problems and tasks, students should be well knowing
the nature and substance of these issues, including the entire range of possible solu-
tions. ToolKid programs Pouring, At the river, Towers, and Paths allow students to
study various problem situations and their variations through play and fun, in attractive
visual environment. They are enabled to gradually reveal multiple sets of solutions and
to explore for the best, quickest and most effective algorithms, programs and solutions.
They should respect the rules and limitations of each of these programs. Horizons of

Improving Teaching and Learning Computer Programming in Schools ... 67

students should be expanded by considering variations of ToolKid programs involving
more complex problem situations, rules, requirements and restrictions.

The majority of the K-4 teachers interviewed by the author during the phases of
implementation and monitoring of ToolKid software were highly motivated to use this
software and are eager for further professional development in the field. They usually
are not programming professionals but they have to be aware about their role in devel-
opment of algorithmic and computational thinking among students, which is crucial,
according the author.

4.3. The Pouring Game

The shepherd has three bowls with the largest being full of milk. You need to help shep-
herd to share this milk fairly into two equal portions using only the three bowls and no
other measuring devices. There are two levels of this game. The first one (Fig. 5 a) with
three bowls with 8, 5, 3 liters, respectively, and the second (Fig. 5 c) with three bowls
with 10, 7 and 3 liters, respectively. Each pouring from one to other bowl means one
step. Determine a method of dividing with minimum steps.

a) Initial position (level 1). b) Final position (level 1).

c) Initial position (level 2).

Fig. 5. The Pouring Game.

M. Jancheski 68

The Table 3 presents schematic view of possible solutions on the first level of the
program.

4.4. Across the River (Game)

The six tasks (Fig. 6) contained in this educational game belong to two variant of
tasks.

Variant 1 (Fig. 7)

The shepherd and the characters (1. sheep, hay and wolf; 2. goat, cabbage and wolf;
3. rabbit, cabbage and fox) came to the bank of a river. The shepherd’s challenge is to
carry himself and all the characters to the far bank of the river.

The game requires the shepherd to get all the characters across a river in a small
rowing boat. Only the shepherd can operate the boat. The boat can cross the river
many times to get everyone across. As some of the abovementioned animals repre-
sent a real danger to other animals or objects, the sheep should be careful to do the task

Fig. 6. Menu with 6 tasks.

Table 3
One solution on the Pouring program (first level)

Bowl / Step I
3 l.

II
5 l.

III
8 l. Pouring

1 0 0 8 III → II
2 0 5 3 II → I
3 3 2 3 I → III
4 0 2 6 II → I
5 2 0 6 III → II
6 2 5 1 II → I
7 3 4 1 I → III
8 0 4 4

Improving Teaching and Learning Computer Programming in Schools ... 69

keeping all characters intact. For example, if left unattended together, the wolf would eat
the sheep and the goat, the fox would eat the rabbit, the sheep would eat the hay, or the
goat would eat the cabbage. Solve this game in the smallest number of crossings.

Example with no solution (Fig. 8): the girl and the characters: cat, mouse, and cheese.

Fig. 7. Variant 1.

Table 4
Solution of Variant 1

N0 of trips Moves Left shore Right shore

S, R, C, F
1 S, R → C, F S, R
2 ← S S, C, F R
3 S, C → F S, C, R
4 ← S, R S, R, F C
5 S, F → R S, F, C
6 ← S S, R F, C
7 S, R → / S, R, F, C

Legend: S-Shepherd, R-Rabbit, C-Cabbage, F-Fox

Fig. 8. Example with no solution.

M. Jancheski 70

Variant 2

A grandmother and a grandfather of equal weight (90 kg), together with their two
grandchildren, each of half their weight (45 kg), wish to cross a river in a boat that only
accommodate a maximum weight of one adult (90 kg). If the total weight of passengers
exceeds the capacity of the boat, it will sink. It is known that all four family members
can operate the boat. What is the minimum number of trips all family members need to
cross the river?

Subvariant: Without grandfather and with the same game conditions.

4.5. The Tower (Mathematical Game)

There are three vertical towers and n disks, (3 ≤ n ≤ 7). The initial position of the game
is with all discs placed on one tower in ascending order of size. The goal is to move
discs from this tower to another tower with minimal number of steps, while respecting
the following rules: 1) each step consists of one move, 2) each move consists of taking
the uppermost disk from one tower and placing in on the top of another tower, 3). No
one disk may be placed on top of a smaller disk. The game provides counter of move-
ments.

Before starting the game, the gamer has an opportunity to select the level, i.e. the
total number of used disks. Allowed numbers are all elements of the set {3,4,5,6,7}.

When the gamer wants to move one of the disks, he/she need to click on it (after
which its edges are stained in red), and then to click on the destination tower (where he/
she want to place the disk). And without complying with the rule that it is not allowed
to place greater on a smaller disk, the program will not allow it. In case the gamer wants
to cancel the last selected disc before being moved, it can be done by clicking on the
departure tower (the tower where this disk is placed).

The Fig. 9 provides a solution for n = 3 (three discs) where all three discs of middle
tower should switch on the right tower with minimal moves.

We saw that with three disks, this mathematical game can be solved in seven moves.
For a given number of disks, n, the minimum number of moves required to solve a
Tower of Hanoi puzzle is 2n – 1.

a) Initial position. b) Final position.

Fig. 9. The Tower.

Improving Teaching and Learning Computer Programming in Schools ... 71

4.6. The Paths (Mathematical Game)

The program has three levels. Before choosing the level, select the desired figure out
of four offered figures.

Level 1. Help the turtle to pass all sections of the path once by successively clicking on
the colored circles. The turtle will automatically move after each subsequent click.

Level 2. Select the path that the turtle will pass by successively clicking on the colored
circles. The turtle will carefully wait for you to press the Enter button, and then she will
pass the path you have paved for her.

Level 3. Find out which circle should stand for the questionnaire. Then click on it and
then press Enter. The turtle will start moving along the paved path, while leaving the
painted trail down the path.

The first figure and the first level are predefined, as seen in the Fig. 10.
The Fig. 11 presents cases with different figures in three levels, respectively.

Fig. 10. Initial position of the game.

a) Level 1. b) Level 2.

Fig. 11. Cases with different figures.

M. Jancheski 72

4.7. Labyrinth (Maze)

Help the turtle to find her way through the maze from start to finish, while eating as
much as possible food units.

The toolbar functions (Fig. 12) include:
Moving one step forward/backward. ●
Right angle rotations. ●
Setting the speed of the movement (slow, normal, fast). ●
Setting the step length. ●
Selecting a maze from a set of mazes. ●
Setting the number of fruits on the path. ●

Initially, the gamer determines the type of the maze, the step length and the speed
of the turtle and the number of food items. The following figure shows a case with step
length = 35, speed = 2, number of food items = 1.

Then the gamer uses the keys for navigation and movement to manage the turtle on
the path to the goal. The turtle can never break down the walls which stand in the way in
the form of black lines. If you direct to the wall, it will hit it and recover back one step.

The Fig. 13 presents a situation where the turtle successfully reached the target and
delight with strawberries. The entire path the turtle passed from the start to the finish
is colored in red.

Fig. 12. The toolbar functions.

Fig. 13. Labyrinth 1.

Improving Teaching and Learning Computer Programming in Schools ... 73

The Fig. 14 presents two examples with different initial parameters.

5. Conclusion

The development of the informatics industry, especially the computer technology, actu-
alizes to a great extend the question for the promotion of the computer literacy as one
of the crucial competencies of both the young people and the adults. This development
every day increases the need of computer uses in the educational process and determine
the criterion for literacy to be the mastery in working with computers. Enabling stu-
dents for using the computer technology leads to approaching to the high educational
standards which means contribution for the development of the brain freedom, knowl-
edge, innovations and creativity as a base of the society.

Educational institutions, scientists, experts and teachers should be in line with ac-
tual achievements in science and new technologies. They also should be aware of and
to promote 21st-century skills, including:

Information and communication skills. ●
Thinking and problem-solving skills. ●
Communication and self-directed learning skills. ●
Ability to use technology to access, manage, integrate, and evaluate information, ●
construct new knowledge; and communicate with others effectively.
Ability to learn academic content through real-world examples. ●

(Source: Partnership for 21st-Century Learning, 2004)
The programming skills are a part of skills listed above. They are widely recognized

as a fundamental issue in today’s digital word. Regardless of what programming lan-
guage we use, it is important to know that programming allows us not only to do experi-
ments with the computer, but also, by developing certain (good) style of programming,
can help us to think better. Only it turns programming into activity worthy to be carried
by people who do not intend to become specialists in informatics. The adoption of al-
gorithmic way of thinking is an advantage in today’s dynamic world, where people are
forced to constantly plan (operations, finance, materials) and sometimes to operate in

Fig. 20. Labyrinth 2. Fig. 21. Labyrinth 3.

Fig. 14. Examples with different initial parameters.

M. Jancheski 74

conditions of chronic lack of resources of all kinds, including the information (Дичева
et al., 1996).

Scratch, Logo, and ToolKid are three successful projects in the field of computer
programming for novices. The first two is directly related with programming, while the
role of the third is latent; it could to be used as a preparation for programming.

Well-trained experienced teachers will know how to exploit the potential of such
programs to promote algorithmic way of thinking as a part of computational thinking,
and to encourage creativity and competitive spirit among the students. Critical thinking,
problem solving and innovation are also issues where the role of teachers is unchange-
able. The author fully agrees with the statement of Ed Lazowska, adjunct professor in
University of Washington (Robot..., 2017):

“In the 21st century, computational thinking is essential for everyone.
‘Computational thinking’ is a problem analysis and decomposition,
algorithmic thinking and expression, functions and abstraction, fault
isolation and debugging”.

References

Дичева, Д.К., Дичева, Д.К., Николов, Р.В., Сендова, Е.Й. (1996). Информатика в стил Лого. Просвета.
Fichtner, A. (2014). 7 Interactive tools to teach your kids computer coding.

http://www.sheknows.com/parenting/articles/1048851/fun-ways-to-teach-your-kids-

to-code

Ford Jr., J.L. (2009). Scratch Programming for Teens. Cengage Learning.
Gardner, A. (2014). Teach Coding with Robot Turtles!

https://educators.brainpop.com/2014/05/23/teach-coding-robot-turtles/

Ghose, T. (2016). The Best Coding Toys for Kids. Live Science press.
http://www.livescience.com/53957-best-coding-apps-and-toys.html

Guo, P. (2014). Python is Now the Most Popular Introductory Teaching Language at Top U.S. Universi-
ties. https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-

introductory-teaching-language-at-top-u-s-universities/fulltext

Harvey, B. (1997). Computer science Logo style, Vol. 2. Advanced techniques. The MIT Press.
Harvey, B. (1997). Computer science Logo style, Vol. 1. Symbolic computing. The MIT Press.
Honey, M., Kanter, D.E. (Eds.). (2013). Design, make, play: Growing the next generation of STEM innova-

tors. Routledge.
Jancheski, M. (2016). One decade of ToolKid software implementation in Macedonian primary schools. In: In-

ternational Conference of Education, Research and Innovation Proceedings. Seville, Spain, 2877–2886.
Logo foundation (2014–2017).

http://el.media.mit.edu/logo-foundation/what_is_logo/index.html

Marji, M. (2014). Learn to Program with Scratch: A Visual Introduction to Programming with Games, Art,
Science, and Math. No Starch Press.

Papert, S. (1999). Logo philosophy and implementation. Logo Computer Systems Inc.
Pollock, W. (2014). Super Scratch Programming Adventure. Canadá: The LEAD Project.
Robot Turtles (2014–2017). http://www.robotturtles.com
Sande, W. D., Sande, C. (2014). Hello World! Computer Programming for Kids and Other Beginners. Man-

ning Publications.
Scratch Wiki (2017), https://wiki.scratch.mit.edu
Tynker – Learn to Code (2012–2017). https://www.tynker.com
Vlieg, E.A. (2016). Lists. In Scratch by Example. Apress, 223–248.

Improving Teaching and Learning Computer Programming in Schools ... 75

M. Jancheski, master of IT sciences, teaching/research assistant at the
Faculty of Computer Science and Engineering, under the “Ss. Cyril
and Methodius” University in Skopje. The leader of the Macedonian
team on 7 Balkan Olympiad in Informatics and 5 International Olym-
piad in Informatics, since 1998. Consultant and trainer in the crucial
national projects in the field of IT and informatics.

