
Olympiads in Informatics, 2014, Vol. 8, 169–178
© 2014 Vilnius University, IOI

169

REPORTS

omegaUp: Cloud-Based Contest Management
System and Training Platform in the Mexican
Olympiad in Informatics

Luis Héctor CHÁVEZ, Alan GONZÁLEZ, Joemmanuel PONCE
omegaUp
Hacienda de Coaxamalucan 138, Col. Hda. de Echegaray
Naucalpan, Estado de México, México CP 53300
e-mail: {lhchavez,alanboy,joe}@omegaup.com

Abstract. omegaUp is an open source cloud-based online contest and training platform for the
Mexican Olympiad in Informatics. It is designed to be a robust, highly scalable, low cost and se-
cure solution. To achieve our security goals, the platform leverages minijail, a modern and actively
maintained sandbox from the ChromiumOS project with a good security track record as well as
other features for grading task solutions reliably. Students can solve past and ongoing contests as
well as training problems with live feedback. omegaUp also provides easy to use administrative
features enabling users to upload tasks for automatic grading without staff assistance and create
their own contests using any previously uploaded task. Since omegaUp’s launch 3 years ago, it
has hosted more than 400 contests for both IOI training and ACM-like competitions, graded more
than 100,000 submissions, and helped the Mexican Team achieve their best performance in the
IOI finals to date.

Keywords: automatic grading, contest management system, omegaup, minijail, cloud, security.

1. Introduction

In 2010 there were several online judges and training platforms in Mexico, each one tar-
geting a narrow community. There were training gates for one particular language, like

L.H. Chávez, A. González, J. Ponce170

Karelotitlan (Karelotitlán, 2011) (only hosting Karel problems for training), and some
states also had their own training platform or contest management system. National
contests usually suffered from scalability problems: when bursts of load happened, live
feedback was often affected and the contestants’ experience was unnecessarily stressful
because of the grading system. States typically did manual or semi-automated offline
grading. Due to the fragmented effort, none of the platforms invested enough time in
designing and implementing a solution with the scalability, security and easy-to-use
manageability features in mind that national competitions demand. It was often the case
that only the developer of the platform had the ability to upload tasks, set up contests and
make modifications, also making the process not scalable from the human resources per-
spective. Last-minute corrections to the test cases, and sometimes manual verification
of the student’s submissions made grading a time-consuming and error-prone process,
which involved several extra hours of organizers’ time. The result was that training for
IOI and keeping track of the student’s progress was a very ad-hoc process.

omegaUp was created to become a platform that could satisfy the needs of the whole
country to have a centralized, properly maintained and reliable training gate and contest
management system. It was designed to have easy to use administrative features, so
contest organizers across the country can create, manage, and monitor their own con-
tests and even upload their own tasks for automatic grading. This also means having a
reduced dependency on the staff that runs the platform.

omegaUp is now the official platform to host contests for both the national and sever-
al state olympiads. Instead of every region maintaining their own platform and their own
similar but slightly incompatible grading methods, having a single site for the whole
country provides a more homogeneous experience for contestants across the country.
This is also helpful for tracking progress since the pool of previous problems is now
shared and available in a single portal.

The contest environment is designed to be a robust, highly scalable, low cost and
secure solution. Security is achieved by designing a role-based permission model for
the whole site and isolating all untrusted components as much as possible: nodes run-
ning contestants’ code are hosted in virtual machines in the cloud and leverage minijail
(Chromium, 2010), a modern and actively maintained sandbox from the ChromiumOS
project with a good security track record. It is also possible to connect to the omegaUp
server in a firewall-friendly way that locks down the permissions even more to make
stronger isolation guarantees.

Running contestant’s code in the cloud also helps the platform achieve our scalability
goal: to guarantee a good experience for all the contestants during a live event, regard-
less of the size of the contest. The platform leverages from Microsoft Windows Azure
(Windows, 2010) to host the compiling and grading processes, making possible to scale
from one grading machine to dozens of them within minutes with very low cost. The
site also makes heavy use of caching systems to store the result of expensive calcula-
tions temporarily, effectively improving the number of requests per second the system
can handle.

In this paper, we describe how omegaUp works and how it is used to run the Mexican
Olympiad in Informatics as well as other national programming contests.

omegaUp: Cloud-Based Contest Management System and Training Platform... 171

2. Informatics Competitions in México

Mexico holds its national olympiad in informatics (Olimpiada Mexicana de Informatica,
OMI) on a yearly basis. Each of the 32 Mexican States train and select their best 4 con-
testants who participate in the national contest. Our National Olympiad has 100 partici-
pants on average. Most of the states use a similar strategy and have their own established
local informatics committees and run their own State Olympiad in Informatics as well
as training tracks.

Mexico started its participation in the International Olympiad in Informatics in 1992.
Since then, the process of determining our IOI delegation has evolved (Cepeda and
García, 2011). We currently select the best 32 competitors from our national contest and
prepare them targeting the IOI to be held the year after our National Olympiad. Our 4 IOI
participants are selected as the result of a training program that lasts about 10 months,
consisting of 4 training camps and several rounds of online contests and practices. A
group of 20 collaborators with previous international contests experience donate their
time to prepare, create and translate more than 80 tasks used in the selection process.

We have identified several factors that make our informatics development challeng-
ing. Our territorial extension with respect to our economic development often bounds
our training camp organization. Informatics is not considered a first-class assignment
in our basic education system. Students usually arrive at a late age to competitive pro-
gramming with respect to other countries. Furthermore, the understanding of English
language is limited on most of our contestants in early stages, reducing the sources of
self-training information they can read and practice against.

Our mission with omegaUp is to overcome the aforementioned challenges with a
platform that sets our country in a position to achieve better results in the International
Olympiad in Informatics and, in general, contribute to the development of computer sci-
ence in our country.

3. Architecture and Design

The main design goals that omegaUp is set to solve are:

It must be an always-on Contest Management System where contents are provided 1.	
and driven by the community itself, without site administrators’ interaction.
It must provide a secure environment to run untrusted contestant’s code, prevent-2.	
ing cheating.
It must provide a scalable and low-cost contest environment where nodes could be 3.	
added to the system using cloud computing services in case of an increase in load.

omegaUp uses a multi-tier service-oriented architecture, with physical separation
between components, as seen in Fig. 1. The basic workflow of interaction between ome-
gaUp services is as follows. When a contestant submits source code to be graded, the
Frontend web interface relays that message to the Grader service, who orchestrates the
workflow to get the code and input data (if needed) to an available Runner node that

L.H. Chávez, A. González, J. Ponce172

compiles and executes the contestant’s code in a sandbox. Afterwards, the Grader re-
ceives the outputs produced by the contestant’s program from the Runner, compares it to
the expected output and it emits a final verdict which is then sent back asynchronously
to the contestant via a Broadcaster service. The next sections further explain each of the
components.

All communication between components is encrypted using SSL to preserve integ-
rity and confidentiality of the messages, and all server-side and cloud-side components
use a certificate chain rooted in a self-signed Certificate Authority that provides mutual
authentication to prevent contestants invoking any service directly. Isolating the expect-
ed case data is also important to provide security in depth, so even if contestants find
vulnerabilities in the sandbox inside a Runner node, no expected outputs are ever stored
in the machines that run untrusted code, making cheating extremely difficult.

Given the elasticity of the computing resources, it is possible to run 5-hour contests
with an average verdict latency of 2–30 seconds (depending on the number of cases
and time limit) with a total cost of 3 US dollars. Based on the same elasticity property,
we can still achieve a good and responsive contestant experience even when there are
changes to the task’s test cases in the middle of the contest that require a sudden burst
of hundreds of submissions for re-grading. Furthermore, the current price trend of cloud

Fig. 1. omegaUp architecture.

omegaUp: Cloud-Based Contest Management System and Training Platform... 173

services with major providers indicates that running a contest will cost us even less in
the future.

One trade-off about running contestants’ code in cloud computing services is an ex-
pected lower consistency of performance between machines: there are slight but detect-
able variations between instances of a cloud compute provider’s service, even at the
same price level (Ou et al., 2012). To avoid this, other online judge services such as
Sphere Online Judge have dedicated hardware clusters to evaluate contestants’ code
(Sphere, 2008). Nonetheless, it does not affect us too much, given that most tasks are
designed to clearly distinguish between implementations of the expected complexity and
a worse one. Running a 5% sample of the corpus of submissions on different clusters of
the same provider at the same price level1 resulted in a score change for at most 0.73%
of the submissions. Furthermore, when comparing Amazon’s m3.medium against Win-
dows Azure’s A1 instances, we found that only 2.06% of those submissions would have
changed score if evaluated in the other platform.

3.1. Frontend

All user-facing interaction is done through the Web Interface layer, written in HTML 5
and Javascript. Users of omegaUp do not have to download any external plugin or de-
pendency to use the service.

Since security is a priority for omegaUp and to use all HTML 5 features, support
for Internet Explorer previous to version 8 was explicitly dropped. This also reduces
development costs. Modern browser security features such as Content-Security-Policy
and Strict-Transport-Security are used by omegaUp and further guarantee the integrity
of the platform.

All business logic for contest creation and management is processed by the Fron-
tend web service. The Frontend service is written in PHP, running on top of Facebook’s
HHVM and served by nginx. To maintain proper separation of concerns, all interactions
between the Web Interface and the Frontend service are strictly done via JSON mes-
sages using a RESTful API (omegaUp, 2011). When a contestant submits a source code
to be graded, the Web Interface calls a Frontend API to register the grading request in
omegaUp. The Frontend then informs the Grader service about the new submission via
Grade Request Message delivered through a REST API call.

The Frontend provides the administrative interface to manage contests and tasks,
generates statistics and rankings, and hosts the main contest interface which has the
standard CMS features such as clarifications, viewing past submissions, and a real-time
scoreboard using WebSockets.

This layer is also the one responsible for all role-based authentication, sign-on
through Google, Facebook, and native logins, as well as contest policy enforcement.
There is an internationalization infrastructure built in and we support both English and
Spanish, although the vast majority of task descriptions are only available in Spanish.

1	 m3.medium in the case of Amazon and A1 for Windows Azure

L.H. Chávez, A. González, J. Ponce174

A lockdown mode is available for contests that require tighter security controls and
network-level isolation. Visiting the site using an alternative URL2 enables this mode
and ensures all resources are served from the same endpoint, simplifying the firewall
rules that are needed in the physical contest site to achieve the desired level of isolation.
Furthermore, most of the site’s features are disabled in this mode, especially those that
can modify contests or problems, as well as all known scenarios in which contestants
can communicate with each other through site features like viewing source code of past
submissions. This mode only requires that passwords are secret and are not shared be-
tween contestants.

3.2. Grader

The Grader service is a fully asynchronous Scala service that communicates through
JSON messages over HTTPS with client authentication. After a Grade Request Message
is received, it is routed to one of several runner queues that have an associated pool of
Runner nodes. This allows us to provide coarse Quality-of-Service guarantees: tasks
that are designed to always finish within 30 seconds in the worst case will run in the
default queue and provide a very fast response time to contestants; tasks that can take
more than 30 seconds will be sent to a slower queue to avoid bogging down the whole
system. Additionally, if the time to response for a contest needs to be isolated from the
effects of other submissions in the system, a private runner pool can be associated with a
queue that will exclusively process submissions to said contest. If a task’s test cases are
modified while running a contest, re-grading of submissions can be done in yet another
queue to further minimize impact. This allows us to very quickly react to unexpected
live contest issues and mitigate disruption to contestants. Submission states are backed
by a MySQL database and Grader can rebuild the submission queues upon restart.

Each queue has an associated pool of Runner nodes that handle the request in a
producers-consumers fashion. Messages to the runner nodes are also sent using JSON
over HTTPS. Once the runner node finishes running the task, its output is compared in
the Grader service against the expected output using one of several built-in tokenizers,
or can be sent back to a Runner node if a custom grader is required. This scenario usually
happens when tasks do not have a unique solution, so more untrusted code needs to be
executed to come up with a verdict.

Graded submissions’ results are then sent to the Broadcaster component, which up-
dates the contest scoreboard and notifies contestants of the verdict of their submissions.
Broadcaster uses WebSockets to send near-real-time updates directly to contestants’
browsers, avoiding constant periodic polling and providing a low-latency solution.

3.3. Runner

The Runner service is written in Scala, and runs using cloud computing services. We
have used both Amazon Web Services and Microsoft Windows Azure as virtual machine

2	 https://arena.omegaup.com/

omegaUp: Cloud-Based Contest Management System and Training Platform... 175

providers with good results. Running a task is straightforward: the runner receives a
JSON message containing the source file, the execution limits and other task parameters.
The sandbox is then invoked for both the compilation and evaluation of each of the
tasks’ cases, and sends the results back to the grader using a combination of JSON and a
custom bzip2-ed stream with the case results over HTTPS.

Runners are designed to hold the least possible amount of state and be light on con-
figuration. Runners do not need to be pre-registered on the grader: they register them-
selves dynamically upon start on the default queue in case there is a need to spin off new
runners. Task inputs are lazily deployed from the Grader into a Runner until a submis-
sion needs it and are cached for subsequent requests using the SHA-1 hash of the data as
key. Contest administrators can request the re-grading of any submission in a way that
debugging information and errors are displayed in the administrative interface, which is
especially helpful to diagnose issues with interactive tasks or custom graders.

3.4. Sandbox: minijail

When the omegaUp project started, Moe sandbox (Mareš, 2009) was chosen as the sand-
box implementation, since it was also used in the IOI. Some modifications were made
to support multithreaded languages (such as Java) with very lightweight race condition
exploit mitigation, multi-process support to also sandbox code compilation, and syscall
interception to be able to fake dangerous calls without crashing (e.g. Java tries to open
sockets during initialization).

As omegaUp evolved, it soon became obvious that the approach using a ptrace-style
sandbox was not sufficient for a variety of reasons, including being vulnerable to TOC-
TOU races (Isolation, 2014), introducing a large overhead per system call (Merry, 2010),
and that maintaining it was costly since several updates to the kernel broke the sandbox
in non-trivial ways.

For the second version of the sandbox, minijail from the ChromiumOS project was
chosen (Chromium, 2010). It has a more modern architecture, and uses two recent Linux
kernel security mechanisms: seccomp-bpf moves the syscall filtering to the kernel using
compiled bytecode (Drewry, 2012), making it both very efficient and immune to race
conditions while still providing syscall interception to return an error on certain syscalls
instead of terminating the process; Kernel namespaces provide process-level isolation to
the rest of the file system and the network.

minijail allowed the use of unmodified interpreters by providing a whitelist of al-
lowed system calls with negligible overhead. This allowed us to expand the list of sup-
ported languages to C/C++/C++11, Pascal, Java, Python, Haskell, Ruby, and a Pascal-
based Karel compiler with minimal effort. minijail is also actively maintained and used
in a commercial application, so any exploits found are likely to be fixed quickly.

It is important to note that omegaUp considers both contestant’s code execution and
the compilation process as untrusted, so they are run within the sandbox. There have
been Denial of Service (DoS) attacks on compilers such as the Java double parse bug
(MITRE, 2010) and it is very easy to abuse the C++ error messages to generate giga-
bytes of output with very small inputs (TGCEEC, 2014).

L.H. Chávez, A. González, J. Ponce176

4. Contest Management

Any user of omegaUp can create and manage their own contests as well as tasks. Contest
administrators are not limited to IOI or ACM-style contests. Instead, traits such as the
penalty policy, a score decay factor, and scoreboard display policy are freely configu-
rable. Tasks and contests can be configured to be either public or private, with security
options to avoid information leaks.

There is support for editing task descriptions online using a slightly modified Mark-
down syntax, and infrastructure changes are underway to enable a peer-review system to
raise the quality bar of problem statements and minimize last-minute changes. The use
of Markdown instead of free-style HTML was chosen to maintain a more consistent look
and feel for tasks descriptions.

Having a centralized national task repository with standardized rules and expecta-
tions has helped not only train for the IOI, but has spawned or helped improve several
other regional and national level contests, since they do not have to worry about the
infrastructure to make a big successful contest. We even have visitors and contests from
other South American countries, such as Colombia and Bolivia.

5. Open Source and Openness

All of omegaUp’s source code is freely available from GitHub with a BSD license3. We
also run on top of a fully open source stack: nginx, HHVM, Debian/Ubuntu GNU/Linux
with MySQL databases. Contributing to omegaUp is also easy since we provide a down-
loadable Vagrant instance that is set up to match our production configuration.

We are also committed to building an open platform: we encourage people that up-
load tasks to omegaUp to make them public for everybody to use and practice. This is a
vast improvement from the previous status quo of contests in Mexico: once a contest was
finished, task data was rarely provided, and even when it was, the data was usually lost
after some time, or was provided in a format that was not useful outside of the particular
contest environment used.

Community

The community around omegaUp is not limited to the contest management system. We
also maintain a Q&A site (similar in spirit to StackOverflow) where students can ask and
answer each other’s questions. We also run a blog where task creators can post explana-
tions to the solutions of their tasks to help students that are stuck.

Also, since the contest system is not designed exclusively for IOI-style tasks,
ACM‑ICPC student chapters across the country and other organizations with national
programming contests like the Mexican National Open Programming Contest CONACUP
(CONACUP, 2013) have chosen omegaUp to host their contests and training sessions.

3	 https://github.com/omegaup/omegaup/

omegaUp: Cloud-Based Contest Management System and Training Platform... 177

6. Results and Future Work

We are convinced that omegaUp is well positioned to solve most of the problems it was
originally designed to attack. In particular, the state of online contests in Mexico has great-
ly improved, a large and growing number of states use the platform for their local olym-
piad qualifying contests and to help with their training tracks. New types of competitions
have been created thanks to the openness of the platform. Over the next months omega-
Up will become easier to use for novice students and non-students, and the platform will
move to a more autonomous system, where the users provide and review the site content.

Since omegaUp was launched in 2011 it has hosted more than 400 contests for both
IOI training and ACM-like competitions, graded more than 100,000 submissions and
currently provides more than 1,000 practice problems.

Other goals like improving the results of the Mexican Team in the IOI and building
an integral training gate targeted to younger students are more long-term, so it will be an
ongoing effort for a few years to come. So far we can say that, since 2011, omegaUp has
helped Mexico win 4 Bronze and 2 Silver medals. This already represents roughly 50%
of what we achieved from 1993 to 2011: 7 Bronze and 1 Silver medals. We believe these
are just the early signs of its full potential.

7. Acknowledgments

César Cepeda for supporting the project financially and providing invaluable guidance.
Also thanks to all the open source contributors, in order of number of commits: Juliana
Peña for doing the initial user experience implementation, Pablo Aguilar, Abraham Tor-
iz, Hugo Dueñas, Alexis Cervantes, Freddy Román, Omar Ocegueda, Alberto Munguía,
and Rubén Rodríguez.

References

Cepeda, A. and García, M. (2011). Mexican Olympiad in Informatics. Olympiads in Informatics, 5, 128–130.
ChromiumOS Design Docs – System Hardening (2010).

http://www.chromium.org/chromium-os/chromiumos-design-docs/system-hardening
CONACUP – Concurso Nacional Abierto de Programación. (2013). http://conacup.org/
Drewry, W. (2012). Dynamic Seccomp Policies (Using BPF Filters).

http://lwn.net/Articles/475019/
Isolation – The Confinement Principle. (2014).

https://crypto.stanford.edu/cs155/lectures/03-isolation.pdf
Karelotitlán, (2011). http://www.cmirg.com/karelotitlan/
Mareš, M. (2009). Moe – design of a modular grading system. Olympiads in Informatics, 3, 60–66.
Merry, B. (2010). Performance analysis of sandboxes for reactive tasks. Olympiads in Informatics, 8, 87–94.
MITRE CVE-2010-4476: The Double.parseDouble method in Java Runtime Environment (JRE). (2010).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4476
omegaUp REST API documentation. (2011).

https://github.com/omegaup/omegaup/wiki/REST-API
Ou, Z., Zhuang, H., Nurminen, J. K., Ylä-Jääski, A., Hui, P. (2012). Exploiting hardware heterogeneity within

the same instance type of Amazon EC2. 4–4.

L.H. Chávez, A. González, J. Ponce178

https://www.usenix.org/system/files/conference/hotcloud12/hotcloud12-final40.pdf
SPOJ Clusters. (2008). http://www.spoj.com/clusters/
The Grand C++ Error Explosion Competition. (2014). http://tgceec.tumblr.com/
What is Windows Azure. (2010).

http://azure.microsoft.com/en-us/overview/what-is-azure/

L.H. Chávez is an ACM-ICPC world finalist (2010) and has a bach-
elor’s degree in computer science (2011) from Tecnológico de Mon-
terrey, Campus Querétaro. He has been involved in several efforts to
improve the state of programming contests in Mexico since 2007, and
is one of the co-founders of omegaUp. He is currently employed at
Google in the Chrome team and is also studying towards a MSc in
computer science from Stanford.

A. González has a bachelor’s degree in computer systems engineering
(2012) from Instituto Tecnológico de Celaya. He created Teddy On-
line Judge in 2008, which hosted several national-level contests. He is
currently a Software Engineer in Microsoft, working in the Operating
Systems group.

J. Ponce participated in the IOI 2005 and was Mexican IOI Deputy
Leader in 2009 and 2010. Has a bachelor’s degree in computer science
(2011) from Tecnológico de Monterrey, Campus León. He contributes
to the Mexican Olympiad in Informatics coordinating the national
team selection process since 2009 and currently works for Microsoft
as a Software Engineer in Windows Azure SQL DB.

