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“In the beginning…”1

• In May 1989 the first IOI take place in Pravetz, 

Bulgaria with a single

Task. A sequence of 2N boxes is given, N – 1 of 
them filled with letter A, N – 1 with letter B and 2 
consecutive boxes are empty. Moving two conse-
cutive letters (saving their order) in the empty 
boxes is permitted. Find the minimal number of 
moves that are necessary to arrange all letters A
leftmost than all letters B (does not mater where 
the empty boxes are). 

1
The Bible, Genesis 1:1
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“In the beginning…”
1

• In May 1987, an open competition in progra-

mming for school students was organized just 

before and in connection with the International 

Conference of IFIP “Children in the Informa-

tion Age”

• The contestants was separated in three age 

groups: under 14 years, under 16 years and 

older than 16 years (seniors).
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“In the beginning…”

• Tasks (seniors). Bus stops in a city are labeled with 1,

2,…, N. All bus routes of the city are: M1 = (i1,1, i1,2,…,

i1,m1), M2 = (i2,1, i2,2,…, i2,m2),…, Mr = (ir,1, ir,2,…, ir,mr),

1 ij,k  N, ij,k  ij,l when k  l. Each bus start from one

end of its route, visit all stops of the route in the given

order and, reaching the other end of the route, go back

visiting all stops in reverse order. Write a program that,

for given stops i and j, finds fastest possible way of

getting from stop i to stop j by bus (if possible). Times

for travel from stop to stop are equal and 3 times less

than the time to change busses.
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Graph structures

A graph structure G(V,E) is composed of:

• finite set V ={v1, v2,…,vn} of vertices;

• collection E = {е1, е2,…,еm} of links. Each link

e is connecting 2 vertices v and w: e = (v,w).

Links could be directed (from v to w) – arcs or

undirected – edges (notation is the same (v,w)).

Collection E could be set (then G is a graph) or

multi-set (then G is multi-graph).
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Graph structures

Combining directed/undirected with set/multi-set

we obtain 4 categories of graph structures:

• Directed multi-graphs;

• Directed graphs or digraphs;

• Undirected multi-graphs or multi-graphs;

• Undirected graphs or graphs.

Rem. Links (i,i) are called loops. We will consider

graph structures without loops.
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Traversals in graph structures

• The sequence v0,v1,…,vl of vertices of a digraph

is called course of length l from v0 to vl, if there

is an arc (vi,vi+1) for each i = 0, 1, …, l – 1.

When v0 = vl then the course is called circuit.

• The sequence v0,v1,…,vl of vertices of a graph is

called path of length l from v0 to vl, if there is an

arc (vi,vi+1) for each i = 0, 1, …, l – 1 and vi – 1 

vi + 1. When v0 = vl then the path is called cycle.
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Traversals in graph structures

• Graph structure in which there is a course,

respectively path, from each vertex to each other

vertex is called connected.

• Directed graph structure in which for each two

vertices there is a course in at least one of the

two possible directions is called weakly

connected.
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Traversals in graph structures

• Moving in a graph structure that pass trough

each link once is called Euler moving (Euler

course, Euler circuit, Euler path or Euler

cycle).

• Moving in graph structure that pass trough

each vertex once is called Hamilton moving

(Hamilton course, Hamilton circuit, Hamilton

path or Hamilton cycle).
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Cost functions

• On each graph structure it is possible to define
cost function – on vertices cV: V  C, on links
cE:E  C, or both, where C is usually some
numerical set of possible values.

• Values of the cost functions, beside cost, are
called also length, weight, reliability, etc.
depending of the situation.

• If a graph structure has no cost function
defined then we will presume that the cost of
each vertex and link is 1.
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Cost functions

• Cost function is usually extended in some
natural way on sub-graphs and other sub-
structures defined in the graph structure. For
example the cost of a path in a graph is usually
defined as a sum of costs of its edges, of its
vertices or both of vertices and edges (if
applicable).

• The notion path (course) of a minimal cost,
called also shortest path (course) is
fundamental for algorithmics in graphs.
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Shortest path/course task

• Task 1 (IOI’1989) is a shortest path task: Let V be the set of

strings of length 2N composed of N–1 letters ‘A’, N–1 letters

‘B’, and 2 consecutive letters ‘O’. Two vertices of V are linked

by an edge if one of the strings could be obtained from the

other by swapping letters ‘O’ and two other consecutive letters,

conserving their order. The strings in which all letters ‘A’ are

leftmost of all letters ‘B’ (does not mater where the letters ‘O’

are) are called final. Write a program that for given string S

finds one path of minimal length (trivial cost of each edge is 1)

from S to some final string. If no paths between S and a final

string, the program has to print corresponding message.
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Shortest path/course tasks

• Task 2. (International Contest 1987) is also a

shortest path task: A graph G(V={1,2,…,n},E) is

given. The set E of edges is defined by r of its paths of

length m1, m2,…, mr, respectively, in such a way that

each edge of G is included in at least one of the given

paths. The cost of each vertex is 3 and the cost of each

edge is 1. Write a program that, for given two vertices

v and w, to find the shortest path between v and w (if

such path exists).
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Shortest path is a distance

• Let G(V,E) be a graph with cost function cE:E C,

where C is a numeric set with non negative values.

Then the function d:VV C, where d(v,w) is the cost

of the shortest path from v to w is a distance in classic

mathematical sense of the word because:

– (i)  v, w  V, d(v,w)  0 and d(v,w) = 0 iff v = w;

– (ii)  v, w  V, d(v,w) = d(w,v);

– (iii)  v, w, u  V, d(v,w)  d(v,u) + d(u,w).
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Shortest path is a distance

• Introducing of distance function gives us the

possibility to consider the graph structure

G(V,E) as a (geo)metric object and to define,

for example:

• Center of G – each vertex v, which minimize

D(v)=max{d(v,w)|wV}. If v is a center then

D(v) is called radius of G.

• The value D(G)=max{d(v,w)|v,wV} is called

diameter of the graph G, etc.
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Graph structures and relations
• A,B – sets. R  A  B is called relation. Examples: 

“x<y”, “x y”, “x=y”, etc.; “the point p lye on the line 

l”, “the line l pass trough the point p”, “lines l and m

are parallel” etc.; “A B”, “A and B intersects”, etc.

• Relations found outside mathematics – “x is a son of 

y”, “x likes y”, “x and y are in a same class”, etc; “the 

village x is linked with the village y by a road” 

(similar relations could be established among city 

crossroads linked by streets, railway stations linked by 

railway roads, etc. 
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Graph structures and relations

• Many tasks arise, in a natural way, in connec-

tion with a specific finite relation – abstract 

(mathematical) or from the real world. 

• That is why it is important to know the 

properties of relations over Cartesian squares  

A  A – reflexivity, symmetry, anti-symmetry

and transitivity, as well as the most popular 

classes of relations – equivalences and orders.
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Graph structures and relations

• Finite relation is the same as digraph. Indeed,
each digraph G(V,E) could be considered as a
relation E  V  V and vice versa.

• Finite relation E  V  V which is symmetric
(and optionally reflexive) is really a graph.

• That is why, each task connected with some
finite relation could be considered as a task in
digraph or graph. For the following examples
we will fix V to {1, 2,…, n}.
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Graph structures and relations

• Task 3: Let E  V  V be an equivalence. Find
the number of classes of equivalence of E. Is
this number equal to 1? If the number of
classes is great than 1, then find explicitly the
classes of equivalence of E.

• Graph formulation: How many connected
components has the graph G(V, E)? Is the graph
connected? If not, then find the vertices of each
connected component of G.
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Graph structures and relations

• Task 4: Let E  V  V be a total order (we will

denote (x,y)E with x  y) and |V|=M. Find a

chain of all elements of V, i.e. such sequence

a1, a2,…, aM that a1 a2  …  aM. (sorting!!!)

• Task 5: Let E  V  V be a partial order which 

is not total (we will denote (x, y) E with x y. 

Find a chain of elements of V with maximal 

length such that if i<j, ai  aj or ai and aj are 

not comparable.
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Graph structures and relations

• Both tasks could be covered by the following

graph formulation: Given a digraph G(V,E)

without circuits. Find a course with a maximal

length in G.

• Digraphs without circuits are very popular and

have specific name – dag (directed acyclic

graphs).
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Graph structures and relations
• Task 6: Let R1  A  B and R2  B  A are such that 

(a,b) R1 iff (b,a) R2 (mutually reversed). Find a 

subset {(a1,b1), (a2,b2), …, (aM,bM)} of R1 with 

maximal number of elements such that ai aj and bi

bj, 1 i < j  M.

• An example of mutually reversed relations from the 

real life could be the couple “the person p could do 

the work w” and “the work w could be done by the 

person p”. For each couple of mutually reversed 

relations we can build a bipartite graph G(V=AB,

R1) considering elements of  R1 as not ordered.
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Graph structures and relations

• Searched in task 6 subset M of edges such that 

each vertex is end of at most one edge in M is 

called maximal matching.

• In a graph formulation the task will be: “Given 

a bipartite graph G(V=AB, R1). Find one 

maximal matching of G.”

• Task for finding a maximal matching of the 

vertices in an arbitrary graph is much more 

difficult! 
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Trees and rooted trees

• Discussion of tasks in graph structures is 

impossible without introducing the notion tree.

• By the classic definition, the graph T(V,E) is a 

tree if it is connected and has no cycles. 

• For the purposes of algorithmics more helpful 

is the notion rooted tree. Two equivalent 

inductive definitions of rooted tree are given 

below.
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Trees and rooted trees

Definition 1.

• (i) The graph T({r},) is a rooted tree. r is a

root and a leaf of T;

• (ii) Let T(V,E) be a rooted tree with root r and

leaves L = {v1, v2,…, vk}. Let v  V and w  V;

• (iii) Then T’(V’ = V  {w}, E’ = E  {(v,w)})

is also a rooted tree. r is a root of T’ and leaves

of T’ are (L – {v})  {w}.
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Trees and rooted trees
Definition 2.

• The graph T({r},) is a rooted tree. r is a root and a
leaf of T;

• (ii) Let T1(V1,E1),T2(V2,E2),…, Tk(Vk,Ek), be rooted
trees with roots r1, r2,…, rk, and leaves L1, L2,…, Lk,
respectively. Let r  L1L1…Lk;

• (iii) Then T’(V’ = V1V2…Vk{r}, E’= E1 E2

… Ek{(r,r1), (r,r2),…,(r,rk)}) is also a rooted
tree. r is a root of T’ and leaves of T’ are L1L2…
Lk. Rooted trees T1,T2,…,Tk are called sub-trees of
T’.
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Trees and rooted trees

• Rooted trees are undirected graphs. Anyway, 

Definition 1 is introducing an implicit

direction on the edges of the rooted tree. That 

is way we could say that v is a parent of w

and that w is a child of v (Defintion 1).

• Obviously, each rooted tree is a tree and each 

tree could be rebuild as rooted when we 

choose one of the vertices for root. 
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Trees and rooted trees

• If G(V,E) is a graph and T(V,E’) is a (rooted) 
tree such that E’  E than T is called 
spanning tree of G. The most natural way to 
check whether the graph G is connected is to 
try to build a spanning tree of G. 

• If c: E  C we could definе c(T(V,E’)) = 
eE’ c(e). Each spanning tree T of G with 
minimum (maximum) c(T) is called minimal 
(maximal) spanning tree of G.
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Presentation of graphs and trees

• Well known presentations of graphs are:

– List of edges (or arcs)

– The adjacency matrix 

– Lists of neighbors (or children)

– Matrix of incidence, etc.

• Specific presentations of trees are:

– List of parents

– “Left child – right neighbor”, etc.  



Cairo, August 2008Kr. Manev, Tasks in Graphs

Presentation of graphs and trees
• Presentation of graph is crucial for the 

effectiveness of the algorithms

– for e  E do{...} – list of links

– for (vV’ V) – adjacency matrix

{ for wV’’ V

{... if(v,w)E {...}}}

– for vV 

{for w such that (v,w)E do{...}}

– lists of neighbors
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Classification of tasks in graphs
• Two approaches for classification of tasks in graphs 

could be considered – this of the profiled textbooks 

for algorithms in graphs and this of the general 

textbooks in algorithms:

 The profiled textbooks for algorithms in graphs use as a 

criteria some notion or property. The approach is based on 

the inner, graph-theoretical logic;

 Examples: Christophides, N. (1975). Graph Theory. An 

Algorithmic Approach, Academic Pres.

Gondran, M. and M. Minoux (1984). Graphs and 

Algorithms, John Wiley & Sons.
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Classification of tasks in graphs
• The general textbooks in algorithms classify the 

tasks by the class of algorithms (or the algorithmic 
scheme) that can solve a set of tasks:
 “Divide and Conquer”;
 Dynamic programming;
 Exhaustive search;
 Greedy;
 Algorithms in graphs, etc.;

• So, the algorithms in graphs are specific category in 
general classification of algorithmic approaches.

• Example: Cormen, T. H., Ch. E. Leiserson and R. L. 
Rivest (1990). Introduction to Algorithms, Second 
Edition, The MIT Press.
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Classification of tasks in graphs

• Such classification does not exclude the 

possibility an algorithm on graphs to be 

classified as:

 Dynamic programming – for example, the 

shortest path task;

 Greedy – for example, min/max spanning 

tree;

 Exhaustive search.
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Classification of tasks in graphs
• Using the second approach in depth we propose the 

following categories of the algorithms in graphs 
(and so – of the tasks solved by these algorithms) :

 “Bread-first” search;

 “Depth-first” search;

 Euler traversals;

 Min/Max Spanning trees;

 Relaxation approach (Dijkstra);

 Exhaustive search in graphs;

 Matching/Flows in Networks;

 Games in graphs.
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“Bread-first” search

• Algorithmic scheme “Bread-first” is the 
easiest for understanding and applying, but 
needs knowledge of the ADT queue. 

• Searching the graph “in bread” we can:

 To check the accessibility of a vertex  from another 
vertex in a graph;

 To check the connectivity of a graph; 

 To find the connected components of a graph;

 To find the shortest path from each vertex of a 
graph to each other vertex – for graphs without 
cost function on edges, etc. 
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“Depth-first” search

• Algorithmic scheme “Depth-first” is more 

difficult for understanding and applying. But 

the knowledge of the ADT stack is escaped by 

using recursion. With DF we can solve the 

mentioned above tasks accessibility, 

connectivity,  connected components.

• DF can’t solve shortest path but DF is a first 

step for topological sorting, articulation 

vertices and links, strongly connected 

components, etc. 
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Euler traversal

• The algorithm for finding an Euler cycle

seems to be a specific algorithm, but it could 

be considered as an algorithmic scheme 

because small modification of it can solve 

other tasks as:  

– Euler path in a multi-graph;

– Covering of edges of a multi-graph with 

paths that not intersect in edges, etc. 
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Min/Max Spanning Tree
• Building min/max spanning tree is specific, 

easy to understand, optimization tasks in 
graphs with cost function on the edges.

• The algorithms of Prim and Kruskal solve this 
task

• Some authors classify algorithms for building 
MST as “greedy“ and this is reasonable. MST 
tasks have the mathematical structure –
matroid – that is necessary and sufficient 
condition to be solved with the “greedy” 
scheme.   
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Relaxation approach
• Finding of the shortest path (“1 to 1”, “1 to 

all” or “all to all) is the most important  opti-

mization tasks in graphs with cost function (on 

edges, on vertices or both).

• Relaxation approach of Dijkstra is a base of 

practically all existing algorithms. Many 

related optimization tasks (largest path, most 

reliable path, etc.) could be solved by the same 

approach. It is possible to classify it as   

“greedy“ as well as “dynamic programming” 
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Exhaustive search in graphs

• Typical task in graphs that can be solved by 
exhaustive search is finding of the Hamilton 
traversal. 

• Speaking for “exhaustive search” in graphs, 
people usually have in mind the algorithmic 
scheme “backtracking”.

• But exhaustive search in graphs are also the 
algorithms that generate (all) permutations, 
combinations, variations, partitions, and so 
on, of the vertices, of the edges or both.
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Matching, flows and games

• These are relatively difficult categories of 

tasks. Understanding of algorithms that can 

solve them suppose deep mathematical 

background.

• Beside mentioned categories of tasks we 

would like to mention that the graphs and 

especially the trees are used as a 

technological  instrument in algorithms from 

other domains.      
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Graphs in Bulgarian Olympiads

Category of tasks
Number of 

tasks

Age group

C B A

Bred-first search* 15 6 3 6

Depth first search 15 2 4 9

Euler traversals 3 1 2

Minimum spanning tree 2 2

Shortest path 25 2 7 16

Matching and flows in networks  6 2 4

Games in graph (Nim) 2 1 1

Exhaustive search 15 1 2 12

Difficult to classify 2 2
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Unclassified tasks

• Task 7 A set V of vertices and the length of the 

shortest path d(v,w) for each v,wV are given. 

Find a graph G(V,E) with minimal number of 

edges and cost function on the edges, in which 

the length of the shortest path for each couple 

of vertices v,wV is equal to the given d(v,w).

• Even if the terminology of the shortest path 

task is involved this tasks is not solvable by 

the relaxation approach. 



Cairo, August 2008Kr. Manev, Tasks in Graphs

Unclassified tasks

• Task 8 A rooted tree T(V,E) is given. For each 
vertex v, the vertices that belong to the unique 
path from v to the root of T are called ancestors
of v. For given vertices u and v find their lowest 
common ancestor (LCA), i.e. such vertex w that 
is ancestor of u and v, and there is no common 
ancestor w’ of u and v, such that w is ancestor of 
w’.

• LCA task needs an approach that is not among 
the mentioned above. 
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Conclusions

• Graph structures are an important origin of 

tasks for olympiads in informatics.

• Most of the notions and concepts are 

understandable by relatively young students. In 

Bulgaria, students aged 14-15 years solve 

regularly such task in national contests. 

• So teaching of graph concepts and algorithms 

really could starts at the age of 12-13 years.
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Conclusions

• Proposed classification of tasks in graphs is one 

of many possible. Classification based on other 

principals are also possible.

• But some classification of tasks in graphs is 

necessary for each team of teachers that is 

coaching contestants in programming. 

• Classification of tasks could help to organize 

better both the training process and the 

contests.
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Conclusions

• Proposed classification of tasks in graphs is one 

of many possible. Classification based on other 

principals are also possible.

• But some classification of tasks in graphs is 

necessary for each team of teachers that is 

coaching contestants in programming. 

• Classification of tasks could help to organize 

better both the training process and the 

contests.
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Conclusions
• BFS and DFS are very good possibility to 

introduce the contestant of age 14-15 years in the 

topic.

• At the age of 16-17 years shortest path tasks could 

be included.

• At the age of 18-19, beside algorithmically hard 

tasks, solvable by different kind of exhaustive 

search, some specific topics, like Matching in 

bipartite graphs, Flows in networks and Games of 

type Nim, also could appear in the contests.
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Thanks for your

attention!


