
Cairo, August 2008Kr. Manev, Tasks in Graphs

Tasks in Graphs

Kr. Manev

Sofia University, BULGARIA

Cairo, August 2008Kr. Manev, Tasks in Graphs

“In the beginning…”1

• In May 1989 the first IOI take place in Pravetz,

Bulgaria with a single

Task. A sequence of 2N boxes is given, N – 1 of
them filled with letter A, N – 1 with letter B and 2
consecutive boxes are empty. Moving two conse-
cutive letters (saving their order) in the empty
boxes is permitted. Find the minimal number of
moves that are necessary to arrange all letters A
leftmost than all letters B (does not mater where
the empty boxes are).

1
The Bible, Genesis 1:1

Cairo, August 2008Kr. Manev, Tasks in Graphs

“In the beginning…”
1

• In May 1987, an open competition in progra-

mming for school students was organized just

before and in connection with the International

Conference of IFIP “Children in the Informa-

tion Age”

• The contestants was separated in three age

groups: under 14 years, under 16 years and

older than 16 years (seniors).

Cairo, August 2008Kr. Manev, Tasks in Graphs

“In the beginning…”

• Tasks (seniors). Bus stops in a city are labeled with 1,

2,…, N. All bus routes of the city are: M1 = (i1,1, i1,2,…,

i1,m1), M2 = (i2,1, i2,2,…, i2,m2),…, Mr = (ir,1, ir,2,…, ir,mr),

1 ij,k  N, ij,k  ij,l when k  l. Each bus start from one

end of its route, visit all stops of the route in the given

order and, reaching the other end of the route, go back

visiting all stops in reverse order. Write a program that,

for given stops i and j, finds fastest possible way of

getting from stop i to stop j by bus (if possible). Times

for travel from stop to stop are equal and 3 times less

than the time to change busses.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures

A graph structure G(V,E) is composed of:

• finite set V ={v1, v2,…,vn} of vertices;

• collection E = {е1, е2,…,еm} of links. Each link

e is connecting 2 vertices v and w: e = (v,w).

Links could be directed (from v to w) – arcs or

undirected – edges (notation is the same (v,w)).

Collection E could be set (then G is a graph) or

multi-set (then G is multi-graph).

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures

Combining directed/undirected with set/multi-set

we obtain 4 categories of graph structures:

• Directed multi-graphs;

• Directed graphs or digraphs;

• Undirected multi-graphs or multi-graphs;

• Undirected graphs or graphs.

Rem. Links (i,i) are called loops. We will consider

graph structures without loops.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Traversals in graph structures

• The sequence v0,v1,…,vl of vertices of a digraph

is called course of length l from v0 to vl, if there

is an arc (vi,vi+1) for each i = 0, 1, …, l – 1.

When v0 = vl then the course is called circuit.

• The sequence v0,v1,…,vl of vertices of a graph is

called path of length l from v0 to vl, if there is an

arc (vi,vi+1) for each i = 0, 1, …, l – 1 and vi – 1 

vi + 1. When v0 = vl then the path is called cycle.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Traversals in graph structures

• Graph structure in which there is a course,

respectively path, from each vertex to each other

vertex is called connected.

• Directed graph structure in which for each two

vertices there is a course in at least one of the

two possible directions is called weakly

connected.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Traversals in graph structures

• Moving in a graph structure that pass trough

each link once is called Euler moving (Euler

course, Euler circuit, Euler path or Euler

cycle).

• Moving in graph structure that pass trough

each vertex once is called Hamilton moving

(Hamilton course, Hamilton circuit, Hamilton

path or Hamilton cycle).

Cairo, August 2008Kr. Manev, Tasks in Graphs

Cost functions

• On each graph structure it is possible to define
cost function – on vertices cV: V  C, on links
cE:E  C, or both, where C is usually some
numerical set of possible values.

• Values of the cost functions, beside cost, are
called also length, weight, reliability, etc.
depending of the situation.

• If a graph structure has no cost function
defined then we will presume that the cost of
each vertex and link is 1.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Cost functions

• Cost function is usually extended in some
natural way on sub-graphs and other sub-
structures defined in the graph structure. For
example the cost of a path in a graph is usually
defined as a sum of costs of its edges, of its
vertices or both of vertices and edges (if
applicable).

• The notion path (course) of a minimal cost,
called also shortest path (course) is
fundamental for algorithmics in graphs.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Shortest path/course task

• Task 1 (IOI’1989) is a shortest path task: Let V be the set of

strings of length 2N composed of N–1 letters ‘A’, N–1 letters

‘B’, and 2 consecutive letters ‘O’. Two vertices of V are linked

by an edge if one of the strings could be obtained from the

other by swapping letters ‘O’ and two other consecutive letters,

conserving their order. The strings in which all letters ‘A’ are

leftmost of all letters ‘B’ (does not mater where the letters ‘O’

are) are called final. Write a program that for given string S

finds one path of minimal length (trivial cost of each edge is 1)

from S to some final string. If no paths between S and a final

string, the program has to print corresponding message.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Shortest path/course tasks

• Task 2. (International Contest 1987) is also a

shortest path task: A graph G(V={1,2,…,n},E) is

given. The set E of edges is defined by r of its paths of

length m1, m2,…, mr, respectively, in such a way that

each edge of G is included in at least one of the given

paths. The cost of each vertex is 3 and the cost of each

edge is 1. Write a program that, for given two vertices

v and w, to find the shortest path between v and w (if

such path exists).

Cairo, August 2008Kr. Manev, Tasks in Graphs

Shortest path is a distance

• Let G(V,E) be a graph with cost function cE:E C,

where C is a numeric set with non negative values.

Then the function d:VV C, where d(v,w) is the cost

of the shortest path from v to w is a distance in classic

mathematical sense of the word because:

– (i)  v, w  V, d(v,w)  0 and d(v,w) = 0 iff v = w;

– (ii)  v, w  V, d(v,w) = d(w,v);

– (iii)  v, w, u  V, d(v,w)  d(v,u) + d(u,w).

Cairo, August 2008Kr. Manev, Tasks in Graphs

Shortest path is a distance

• Introducing of distance function gives us the

possibility to consider the graph structure

G(V,E) as a (geo)metric object and to define,

for example:

• Center of G – each vertex v, which minimize

D(v)=max{d(v,w)|wV}. If v is a center then

D(v) is called radius of G.

• The value D(G)=max{d(v,w)|v,wV} is called

diameter of the graph G, etc.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations
• A,B – sets. R  A  B is called relation. Examples:

“x<y”, “x y”, “x=y”, etc.; “the point p lye on the line

l”, “the line l pass trough the point p”, “lines l and m

are parallel” etc.; “A B”, “A and B intersects”, etc.

• Relations found outside mathematics – “x is a son of

y”, “x likes y”, “x and y are in a same class”, etc; “the

village x is linked with the village y by a road”

(similar relations could be established among city

crossroads linked by streets, railway stations linked by

railway roads, etc.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations

• Many tasks arise, in a natural way, in connec-

tion with a specific finite relation – abstract

(mathematical) or from the real world.

• That is why it is important to know the

properties of relations over Cartesian squares

A  A – reflexivity, symmetry, anti-symmetry

and transitivity, as well as the most popular

classes of relations – equivalences and orders.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations

• Finite relation is the same as digraph. Indeed,
each digraph G(V,E) could be considered as a
relation E  V  V and vice versa.

• Finite relation E  V  V which is symmetric
(and optionally reflexive) is really a graph.

• That is why, each task connected with some
finite relation could be considered as a task in
digraph or graph. For the following examples
we will fix V to {1, 2,…, n}.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations

• Task 3: Let E  V  V be an equivalence. Find
the number of classes of equivalence of E. Is
this number equal to 1? If the number of
classes is great than 1, then find explicitly the
classes of equivalence of E.

• Graph formulation: How many connected
components has the graph G(V, E)? Is the graph
connected? If not, then find the vertices of each
connected component of G.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations

• Task 4: Let E  V  V be a total order (we will

denote (x,y)E with x  y) and |V|=M. Find a

chain of all elements of V, i.e. such sequence

a1, a2,…, aM that a1 a2  …  aM. (sorting!!!)

• Task 5: Let E  V  V be a partial order which

is not total (we will denote (x, y) E with x y.

Find a chain of elements of V with maximal

length such that if i<j, ai  aj or ai and aj are

not comparable.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations

• Both tasks could be covered by the following

graph formulation: Given a digraph G(V,E)

without circuits. Find a course with a maximal

length in G.

• Digraphs without circuits are very popular and

have specific name – dag (directed acyclic

graphs).

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations
• Task 6: Let R1  A  B and R2  B  A are such that

(a,b) R1 iff (b,a) R2 (mutually reversed). Find a

subset {(a1,b1), (a2,b2), …, (aM,bM)} of R1 with

maximal number of elements such that ai aj and bi

bj, 1 i < j  M.

• An example of mutually reversed relations from the

real life could be the couple “the person p could do

the work w” and “the work w could be done by the

person p”. For each couple of mutually reversed

relations we can build a bipartite graph G(V=AB,

R1) considering elements of R1 as not ordered.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graph structures and relations

• Searched in task 6 subset M of edges such that

each vertex is end of at most one edge in M is

called maximal matching.

• In a graph formulation the task will be: “Given

a bipartite graph G(V=AB, R1). Find one

maximal matching of G.”

• Task for finding a maximal matching of the

vertices in an arbitrary graph is much more

difficult!

Cairo, August 2008Kr. Manev, Tasks in Graphs

Trees and rooted trees

• Discussion of tasks in graph structures is

impossible without introducing the notion tree.

• By the classic definition, the graph T(V,E) is a

tree if it is connected and has no cycles.

• For the purposes of algorithmics more helpful

is the notion rooted tree. Two equivalent

inductive definitions of rooted tree are given

below.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Trees and rooted trees

Definition 1.

• (i) The graph T({r},) is a rooted tree. r is a

root and a leaf of T;

• (ii) Let T(V,E) be a rooted tree with root r and

leaves L = {v1, v2,…, vk}. Let v  V and w  V;

• (iii) Then T’(V’ = V  {w}, E’ = E  {(v,w)})

is also a rooted tree. r is a root of T’ and leaves

of T’ are (L – {v})  {w}.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Trees and rooted trees
Definition 2.

• The graph T({r},) is a rooted tree. r is a root and a
leaf of T;

• (ii) Let T1(V1,E1),T2(V2,E2),…, Tk(Vk,Ek), be rooted
trees with roots r1, r2,…, rk, and leaves L1, L2,…, Lk,
respectively. Let r  L1L1…Lk;

• (iii) Then T’(V’ = V1V2…Vk{r}, E’= E1 E2

… Ek{(r,r1), (r,r2),…,(r,rk)}) is also a rooted
tree. r is a root of T’ and leaves of T’ are L1L2…
Lk. Rooted trees T1,T2,…,Tk are called sub-trees of
T’.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Trees and rooted trees

• Rooted trees are undirected graphs. Anyway,

Definition 1 is introducing an implicit

direction on the edges of the rooted tree. That

is way we could say that v is a parent of w

and that w is a child of v (Defintion 1).

• Obviously, each rooted tree is a tree and each

tree could be rebuild as rooted when we

choose one of the vertices for root.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Trees and rooted trees

• If G(V,E) is a graph and T(V,E’) is a (rooted)
tree such that E’  E than T is called
spanning tree of G. The most natural way to
check whether the graph G is connected is to
try to build a spanning tree of G.

• If c: E  C we could definе c(T(V,E’)) =
eE’ c(e). Each spanning tree T of G with
minimum (maximum) c(T) is called minimal
(maximal) spanning tree of G.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Presentation of graphs and trees

• Well known presentations of graphs are:

– List of edges (or arcs)

– The adjacency matrix

– Lists of neighbors (or children)

– Matrix of incidence, etc.

• Specific presentations of trees are:

– List of parents

– “Left child – right neighbor”, etc.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Presentation of graphs and trees
• Presentation of graph is crucial for the

effectiveness of the algorithms

– for e  E do{...} – list of links

– for (vV’ V) – adjacency matrix

{ for wV’’ V

{... if(v,w)E {...}}}

– for vV

{for w such that (v,w)E do{...}}

– lists of neighbors

Cairo, August 2008Kr. Manev, Tasks in Graphs

Classification of tasks in graphs
• Two approaches for classification of tasks in graphs

could be considered – this of the profiled textbooks

for algorithms in graphs and this of the general

textbooks in algorithms:

 The profiled textbooks for algorithms in graphs use as a

criteria some notion or property. The approach is based on

the inner, graph-theoretical logic;

 Examples: Christophides, N. (1975). Graph Theory. An

Algorithmic Approach, Academic Pres.

Gondran, M. and M. Minoux (1984). Graphs and

Algorithms, John Wiley & Sons.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Classification of tasks in graphs
• The general textbooks in algorithms classify the

tasks by the class of algorithms (or the algorithmic
scheme) that can solve a set of tasks:
 “Divide and Conquer”;
 Dynamic programming;
 Exhaustive search;
 Greedy;
 Algorithms in graphs, etc.;

• So, the algorithms in graphs are specific category in
general classification of algorithmic approaches.

• Example: Cormen, T. H., Ch. E. Leiserson and R. L.
Rivest (1990). Introduction to Algorithms, Second
Edition, The MIT Press.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Classification of tasks in graphs

• Such classification does not exclude the

possibility an algorithm on graphs to be

classified as:

 Dynamic programming – for example, the

shortest path task;

 Greedy – for example, min/max spanning

tree;

 Exhaustive search.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Classification of tasks in graphs
• Using the second approach in depth we propose the

following categories of the algorithms in graphs
(and so – of the tasks solved by these algorithms) :

 “Bread-first” search;

 “Depth-first” search;

 Euler traversals;

 Min/Max Spanning trees;

 Relaxation approach (Dijkstra);

 Exhaustive search in graphs;

 Matching/Flows in Networks;

 Games in graphs.

Cairo, August 2008Kr. Manev, Tasks in Graphs

“Bread-first” search

• Algorithmic scheme “Bread-first” is the
easiest for understanding and applying, but
needs knowledge of the ADT queue.

• Searching the graph “in bread” we can:

 To check the accessibility of a vertex from another
vertex in a graph;

 To check the connectivity of a graph;

 To find the connected components of a graph;

 To find the shortest path from each vertex of a
graph to each other vertex – for graphs without
cost function on edges, etc.

Cairo, August 2008Kr. Manev, Tasks in Graphs

“Depth-first” search

• Algorithmic scheme “Depth-first” is more

difficult for understanding and applying. But

the knowledge of the ADT stack is escaped by

using recursion. With DF we can solve the

mentioned above tasks accessibility,

connectivity, connected components.

• DF can’t solve shortest path but DF is a first

step for topological sorting, articulation

vertices and links, strongly connected

components, etc.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Euler traversal

• The algorithm for finding an Euler cycle

seems to be a specific algorithm, but it could

be considered as an algorithmic scheme

because small modification of it can solve

other tasks as:

– Euler path in a multi-graph;

– Covering of edges of a multi-graph with

paths that not intersect in edges, etc.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Min/Max Spanning Tree
• Building min/max spanning tree is specific,

easy to understand, optimization tasks in
graphs with cost function on the edges.

• The algorithms of Prim and Kruskal solve this
task

• Some authors classify algorithms for building
MST as “greedy“ and this is reasonable. MST
tasks have the mathematical structure –
matroid – that is necessary and sufficient
condition to be solved with the “greedy”
scheme.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Relaxation approach
• Finding of the shortest path (“1 to 1”, “1 to

all” or “all to all) is the most important opti-

mization tasks in graphs with cost function (on

edges, on vertices or both).

• Relaxation approach of Dijkstra is a base of

practically all existing algorithms. Many

related optimization tasks (largest path, most

reliable path, etc.) could be solved by the same

approach. It is possible to classify it as

“greedy“ as well as “dynamic programming”

Cairo, August 2008Kr. Manev, Tasks in Graphs

Exhaustive search in graphs

• Typical task in graphs that can be solved by
exhaustive search is finding of the Hamilton
traversal.

• Speaking for “exhaustive search” in graphs,
people usually have in mind the algorithmic
scheme “backtracking”.

• But exhaustive search in graphs are also the
algorithms that generate (all) permutations,
combinations, variations, partitions, and so
on, of the vertices, of the edges or both.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Matching, flows and games

• These are relatively difficult categories of

tasks. Understanding of algorithms that can

solve them suppose deep mathematical

background.

• Beside mentioned categories of tasks we

would like to mention that the graphs and

especially the trees are used as a

technological instrument in algorithms from

other domains.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Graphs in Bulgarian Olympiads

Category of tasks
Number of

tasks

Age group

C B A

Bred-first search* 15 6 3 6

Depth first search 15 2 4 9

Euler traversals 3 1 2

Minimum spanning tree 2 2

Shortest path 25 2 7 16

Matching and flows in networks 6 2 4

Games in graph (Nim) 2 1 1

Exhaustive search 15 1 2 12

Difficult to classify 2 2

Cairo, August 2008Kr. Manev, Tasks in Graphs

Unclassified tasks

• Task 7 A set V of vertices and the length of the

shortest path d(v,w) for each v,wV are given.

Find a graph G(V,E) with minimal number of

edges and cost function on the edges, in which

the length of the shortest path for each couple

of vertices v,wV is equal to the given d(v,w).

• Even if the terminology of the shortest path

task is involved this tasks is not solvable by

the relaxation approach.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Unclassified tasks

• Task 8 A rooted tree T(V,E) is given. For each
vertex v, the vertices that belong to the unique
path from v to the root of T are called ancestors
of v. For given vertices u and v find their lowest
common ancestor (LCA), i.e. such vertex w that
is ancestor of u and v, and there is no common
ancestor w’ of u and v, such that w is ancestor of
w’.

• LCA task needs an approach that is not among
the mentioned above.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Conclusions

• Graph structures are an important origin of

tasks for olympiads in informatics.

• Most of the notions and concepts are

understandable by relatively young students. In

Bulgaria, students aged 14-15 years solve

regularly such task in national contests.

• So teaching of graph concepts and algorithms

really could starts at the age of 12-13 years.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Conclusions

• Proposed classification of tasks in graphs is one

of many possible. Classification based on other

principals are also possible.

• But some classification of tasks in graphs is

necessary for each team of teachers that is

coaching contestants in programming.

• Classification of tasks could help to organize

better both the training process and the

contests.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Conclusions

• Proposed classification of tasks in graphs is one

of many possible. Classification based on other

principals are also possible.

• But some classification of tasks in graphs is

necessary for each team of teachers that is

coaching contestants in programming.

• Classification of tasks could help to organize

better both the training process and the

contests.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Conclusions
• BFS and DFS are very good possibility to

introduce the contestant of age 14-15 years in the

topic.

• At the age of 16-17 years shortest path tasks could

be included.

• At the age of 18-19, beside algorithmically hard

tasks, solvable by different kind of exhaustive

search, some specific topics, like Matching in

bipartite graphs, Flows in networks and Games of

type Nim, also could appear in the contests.

Cairo, August 2008Kr. Manev, Tasks in Graphs

Thanks for your

attention!

