
Validating the Security and Stability 
of the Grader

for a Programming Contest System

Tocho TOCHEV, Tsvetan BOGDANOV
Sofia University, Bulgaria



Why?

 Pressure to change the grading system

 New security methods and fixes

 New grading methods / task types

 Always in preparation for the next big event

 New grading systems

 Different software and hardware specifications

 Ensuring ”Fair game”



How Could It Be Verified?

 Code review 

 Peer

 External audit

 Dry run contests

 Suite of submissions



What Can Be Tested?

 Grader

 Stability

 Security

 Other components

 Contestant interface

 Network

 …

 Related articles



Stability

 Correct solution (for each programming language)

 Wrong answer

 Time-limit exceeded (including deadlocks)

 Memory limit exceeded

 Runtime error

 Available libraries (for each programming language)



Security

Attacks during:

 Compilation

 Sandboxing

 Result checking



Attacks During Compilation

 Excessive submit size

 Referencing forbidden files

 Compile time/memory exploits



Attacks During Sandboxing 

 Read/write files/directories *

 Accessing (network) sockets

 Multiple threads

 Multiple processes *

 Raise privileges / break out of sandbox

 Exploit the judge's module (in reactive tasks)

 Denial of service (wasting resources)
* Banning policy should be flexible



Exploits During Checking

 Sandboxing checkers

 Expecting abnormal checker execution



Further Work

 Our experience

 Central checklist / Sample submissions

 Similar checklists for other parts of the system

 Contestant interface

 Network

 Printing

 Backup

 Contestant machine setup


