PERFORMANCE ANALYSIS OF
GRADING SANDBOXES FOR

W

REACTIVE TASKS

Bruce Merry, Ph.D.
South Africa Computing Olympiad

Presented by Rob Kolstad, Ph.D.
USA Computing Olympiad

W

GRADER OVERVIEW

x Training & contests need graders

x Graders must
+ Be easy to use
+ Correctly process their tasks
+ Provide consistent, repeatable results (incl. timing)

x Task types:
+ Batch task (run then evaluate output file)
+ File submission (compare or evaluate file)

+ Program segment (a la Topcoder & 101'10)
+ Reactive/interactive

LINUX TIMING, |

x Traditional (Unix-style) timing;:
+ Timer interrupt occurs at 50, 60, or 100 Hz

+ Processing running when interrupt occurs earns
entire timeslice for its CPU time

+ Works fine for straight-through, single process
tasks (like batch tasks and program-segment
submissions)

+ Works terribly when system is rapidly context
switching

+ Improve accuracy with longer and repeated runs

W

LINUX TIMING, I

x ‘Microsecond timing’
+ Still not standardized

+ Uses high-resolution clock deltas accounted when
control passes to user process

+ Generally high resolution, more accurate, and more
repeatable

+ Still slightly inconsistent due to memory caching
and disk caching

SY

x System calls are generally User code
more CPU-time intensive than
user code

x Several fscanf/fprintf Minaani!
invocations (resulting in Runtime library

read/write syscalls)

write (system call)
x Buffered by the runtime Iibrary4@7

x Relatively few system calls

SYSTEM CALLS: REACTIVE TASKS

User code

e,

v

Runtime library

Grader

Lot

v

Runtime library

Two context switches per
“interaction”

|

W

SY

x Every interactive message is flushed (write
system call) immediately

x NoO real buffering possible

x Thus, lots of system calls and, of course,
lots of context switches

x Syscalls and context switches an easily
dominate running time in a task

GRADER ‘SANDBOXING’

x Modern graders insulate host computer from malicious
programs that

+ Try to destroy resources

+ Try to examine system components not meant for public disclosure
+ Execute other processes

+ Start extra threads

+ Open network sockets

+ Kill other processes running under the same user

+ Etc.

x Thus, graders implement a ‘sandbox’ in which programs can
play but not access disallowed resources

SA

x Most popular method for screening is ‘ptrace’

system call

+ Gives EACH syscall’s information to security program
before syscall execution is started

+ Program vets syscall and returns if all is well

x Easy to see that sandboxed syscalls consume lots of
CPU time (checking and two context switches)

x Heavy syscall use (e.g., reactive tasks) exacerbates
this problem

TRADITIONAL PTRACE-BASED SANDBOX ﬁ

User code Sandbox
(vets syscall info)

Function
—=__ = calls A

Runtime library

System Notification

Valls

NEW LINUX SECURITY MODULE

User code

Hhetibh No expensive
[TI1T1T1]59E context switches!

Runtime library

System
calls

— =

LSM IMPACT ON PERFORMANCE

W

x Batch tasks have few syscalls, so little impact

x Reactive tasks perform many syscalls and thus
receive highest impact (vs. non-sandbox
environment)

x Most interested in impact on measured time
x Also interested in repeatability/variability

x Note: CPU time spent on verification is not a
problem if it is correctly accounted

W

RE

x One task: "Regions” from 101 2009
x One test case: The largest one
x One machine: Core 2 Duo, dual-core, 2.16GHz
x Two sandboxes:
+SACO sandbox (LSM-based)
+ USACO sandbox (ptrace-based)

CPU “AFFINITY”

W

»x Multi-core processors can allocate more than one CPU
for running programs

x “Affinity” connotes one or more programs preferentially
(or exclusively) executing on some single CPU

x Four options for CPU affinity:

+
+
+

Disable a
_ock grac

_ock grad

| but one core
er and user process to same core
er and user process to different cores

+ No affinity (processes free to migrate)

RESULTS; MEASURED TIME

seconds

OO = = N NI W] hi)P) Y
©O o o u o » o »m o u o
| I | | | | | |

— GG
— 09
— G'9
0.
G/

none / nosmp -
none / none - No Sandbpx
none / separate — |'I'|

hone / same — \|

N\

saco/ nosmp - (

saco / none —

SACO Sandpox

saco / separate — I-I-IO

saco / same — \. /

usaco / nosmp - / |-I¢

usaco / none —

o
usaco / separate — F |I]-i

USACO Sandbox

usaco / same — \ |-|I

RESULTS:; STANDARD DEVIATION

— 000
— G0'0
— 010
— G1°0
— 02°0
— GZ'0
— 0€°0

none / nosmp

none / none

none / separate

none / same

saco / nosmp

saco / none

saco / separate

saco / same

usaco / nosmp

usaco / none ptrace sandbox, no CPU affinity

usaco / separate

usaco / same

LSM VS, PTRACE

+ LSM abstracts away from syscall interface, which
usually has 101 ways to do the same thing, exposing

hooks for the fundamental operations (like writing to a
file)

+ LSM is Architecture-independent (moving to x86-64 is
free).

¢ LSM is a less stable interface (kernel internals get
moved around on a whim while system calls have to be
stable)

¢ LSM hangs your machine if you get it wrong
¢ LSM is harder to test (until User Mode Linux fixes this)

W

CONCLUSIONS

x In-kernel security has negligible measured overhead

x ptrace-based sandbox has significant measured overhead
x CPU affinity affects overhead and variability

x ptrace + no affinity is a bad mix

x Caveat: a limited test

x Availibility: Contact Bruce Merry bmerry@gmail.com

QUESTIONS?

