
PERFORMANCE ANALYSIS OF 

GRADING SANDBOXES FOR 

REACTIVE TASKS

Bruce Merry, Ph.D.

South Africa Computing Olympiad

Presented by Rob Kolstad, Ph.D.
USA Computing Olympiad



GRADER OVERVIEW

 Training & contests need graders

 Graders must
 Be easy to use

 Correctly process their tasks

 Provide consistent, repeatable results (incl. timing)

 Task types:
 Batch task (run then evaluate output file)

 File submission (compare or evaluate file)

 Program segment (a la Topcoder & IOI’10)

 Reactive/interactive



LINUX TIMING, I

 Traditional (Unix-style) timing:

 Timer interrupt occurs at 50, 60, or 100 Hz

 Processing running when interrupt occurs earns 
entire timeslice for its CPU time

Works fine for straight-through, single process 
tasks (like batch tasks and program-segment 
submissions)

Works terribly when system is rapidly context 
switching

 Improve accuracy with longer and repeated runs



LINUX TIMING, II

 ‘Microsecond timing’

 Still not standardized

Uses high-resolution clock deltas accounted when 

control passes to user process

Generally high resolution, more accurate, and more 

repeatable

 Still slightly inconsistent due to memory caching 

and disk caching



SYSTEM CALLS: BATCH TASKS

 System calls are generally 

more CPU-time intensive than 

user code

 Several fscanf/fprintf

invocations (resulting in 

read/write syscalls)

 Buffered by the runtime library

 Relatively few system calls

User code

Kernel

Runtime library

write (system call)



SYSTEM CALLS: REACTIVE TASKS

User code

Runtime library

Kernel

Runtime library

Grader

Two context switches per 

“interaction”



SYSTEM CALLS: REACTIVE TASK

 Every interactive message is flushed (write 

system call) immediately

No real buffering possible

 Thus, lots of system calls and, of course, 

lots of context switches

 Syscalls and context switches an easily 

dominate running time in a task



GRADER ‘SANDBOXING’

 Modern graders insulate host computer from malicious 
programs that
 Try to destroy resources 

 Try to examine system components not meant for public disclosure

 Execute other processes

 Start extra threads

 Open network sockets

 Kill other processes running under the same user

 Etc.

 Thus, graders implement a ‘sandbox’ in which programs can 
play but not access disallowed resources



SANDBOX IMPLEMENTATION

 Most popular method for screening is ‘ptrace’ 
system call 

 Gives EACH syscall’s information to security program 
before syscall execution is started

 Program vets syscall and returns if all is well

 Easy to see that sandboxed syscalls consume lots of 
CPU time (checking and two context switches)

 Heavy syscall use (e.g., reactive tasks) exacerbates 
this problem



TRADITIONAL PTRACE-BASED SANDBOX

Kernel

User code

Runtime library

Function 
calls

System 
calls

Notification

Sandbox
(vets syscall info)

Ptrace interceptor



NEW LINUX SECURITY MODULE

Kernel

LSMCore

User code

Runtime library

Function 
calls

System 
calls

Permission 
checks

No expensive

context switches!



LSM IMPACT ON PERFORMANCE

 Batch tasks have few syscalls, so little impact

 Reactive tasks perform many syscalls and thus 

receive highest impact (vs. non-sandbox 

environment)

 Most interested in impact on measured time

 Also interested in repeatability/variability

 Note: CPU time spent on verification is not a 

problem if it is correctly accounted



REACTIVE TIMING TEST SETUP

 One task: “Regions” from IOI 2009

 One test case: The largest one

 One machine: Core 2 Duo, dual-core, 2.16GHz

 Two sandboxes:

SACO sandbox (LSM-based)

USACO sandbox (ptrace-based)



CPU “AFFINITY”

 Multi-core processors can allocate more than one CPU 
for running programs

 “Affinity” connotes one or more programs preferentially 
(or exclusively) executing on some single CPU

 Four options for CPU affinity:

 Disable all but one core

 Lock grader and user process to same core

 Lock grader and user process to different cores

 No affinity (processes free to migrate)



USACO Sandbox

SACO Sandbox

No Sandbox

RESULTS: MEASURED TIME



RESULTS: STANDARD DEVIATION

ptrace sandbox, no CPU affinity



LSM VS. PTRACE

 LSM abstracts away from syscall interface, which 
usually has 101 ways to do the same thing, exposing 
hooks for the fundamental operations (like writing to a 
file)

 LSM is Architecture-independent (moving to x86-64 is 
free).

 LSM is a less stable interface (kernel internals get 
moved around on a whim while system calls have to be 
stable)

 LSM hangs your machine if you get it wrong

 LSM is harder to test (until User Mode Linux fixes this)



CONCLUSIONS

 In-kernel security has negligible measured overhead

 ptrace-based sandbox has significant measured overhead

 CPU affinity affects overhead and variability

 ptrace + no affinity is a bad mix

 Caveat: a limited test

 Availibility: Contact Bruce Merry bmerry@gmail.com



QUESTIONS?


