Fairness of Time Constraints

Martin Mares
mjlucw.cz

Charles University in Prague
Faculty of Math and Physics
Department of Applied Mathematics

Martin Mare$ Fairness of Time Constraints

Introduction — resource limits and fairness

Many programming contests employ automatic evaluation:

@ Programs are run on batches of test data.
@ Correctness of output is checked.
@ Resource limits are enforced, e.g.:

e execution time
@ memory consumption
e communication complexity, . ..

To ensure fairness, we want repeatable results. Problems:

@ Non-deterministic programs

@ Precision of measuring resource consumption,
especially execution time

Martin Mare$ Fairness of Time Constraints

Measuring execution time

We still use timing techniques of the 1980’s.
However, the PC’s have radically changed since that time.
Sources of errors:

@ Multi-processing OS — context switches
Cache hierarchy — aliased, flushed on context switches
Multiple cores — movement between cores

Power management — unexpected changes of CPU speed

°
°

@ Non-uniform memory — memory speed varies

°

@ System management mode — even the OS loses control

Problems with accuracy still resurface (e.g., [Merry 2010]).

Martin Mare$ Fairness of Time Constraints

Test setup — 101 2009 tasks

Testing three tasks from 101 2009 (Plovdiv, Bulgaria):

@ Raisins
o batch task, DP, small inputs
e model solution in time O(n®), memory O(n*)
@ Mecho
e batch task, large inputs
e model solution in time O(nlog n), memory O(n)
@ Regions
e interactive task, data structure
@ judge (not adaptive, so we can run it as a batch task, too)
e about 10° queries/test.
e model solution: time O(n'/2) per query, memory O(n)

We used real submissions from the contest and real test data
(or a subset of).

Martin Mare$ Fairness of Time Constraints

Test setup — machines

Machines used for our tests:
@ Camellia — AMD Athlon64 X2, 2 cores at 1 GHz,
2GB RAM
@ Turing — Intel Core2 Quad, 4 cores at 2 GHz, 4 GB RAM
@ Corbu — Intel Core i7, 4 cores at 2.66 GHz, 6 GB RAM

@ Arcikam — AMD Opteron 2218, 2 CPUs with 2 cores each,
2.5GHz, 8 GB RAM in 2 NUMA nodes

All machines run Debian Linux 5.0 (Lenny) with kernel 2.6.37.

We used our contest environment (Moe), only the sandbox is
interesting.

Martin Mare$ Fairness of Time Constraints

Error distribution for batch tasks — type 1

70

60,
50
40°
30,
20"
10,

Raisins BRA4
- test 020

- onArcikam
500 samples

Mean = 3.631s
Std.dev =0.041 s

3.55 3.60 3.65 3.70 3.75

Figure: Histogram of time [s] spent on a single test, type 1

Martin Mare$ Fairness of Time Constraints

Error distribution for batch tasks — type 2

140

Raisins ESP1
test 020

on Turing
500 samples

Mean = 2.489 s
Std.dev = 0.018 s

fa—

250 255 260 2.65

Figure: Histogram of time [s] spent on a single test, type 2

Martin Mare$ Fairness of Time Constraints

Error distribution — is it Gaussian?

Gaussian (normal) distribution expected, is it so?

k=1 k=2 k=3 k=4 k=5 k=6

Arcikam | 0.694 0.938 0.998 1.000 1.000 1.000
Turing | 0.740 0.982 0.994 0.996 0.998 0.998
Gaussian | 0.683 0.955 0.997 0.999 0.999 1.000

Table: Probability of values within k-times standard deviation

Type 1 is close to Gaussian (further tests confirm that), Type 2
has a much longer tail.

Martin Mare$ Fairness of Time Constraints

Error source — absolute or relative?

0.08]-
r Raisins on Corbu
0.06 -
i 5191 samples
0.04
002 .~ RRORAN A A
15 2.0 25

Figure: Dependence between mean and standard deviation [both s]

Indeed, linear regression gives a good fit with small variance.
(Power management can contribute an additive term.)

Martin Mare$ Fairness of Time Constraints

Tuning the scheduler — experiment setup

We want to test:

@ K — default settings

@ C - real-time process with high priority

@ R—... and pinning to a fixed core

@ X — C with no syscall interception

@ T — K with an older kernel (2.6.32)
Our experiment:

@ 5 well-behaved submissions

@ 3 large test cases

@ each instance run 50 times (alternating instances)

@ each instance normalized by dividing by reference time:
take K, drop outliers (2 at each side), use mean of the rest

Martin Mare$ Fairness of Time Constraints

Tuning the scheduler — results

11sf T T T T T
L10L 1.04+
1.02+
105 K c R X T
= BN B EE - s
0.98+
0.95-
0.96+
0.90+
0.94+
0.85F 1 1 - -
K c R X T
Figure: Raisins on Corbu: Figure: Raisins on Corbu:
quantiles mean and standard deviation

Cheat sheet: K base, C real-time, R ... with pinning,
X no syscall checks, T older kernel.

Martin Mare$ Fairness of Time Constraints

Parallel grading is tricky — 4-core machine (Corbu)

20F —
18}
16
14}

121

m% .LLT

. I 1 I I I
R1 R2 R4 M1 M2 M4

Figure: Parallel grading: Figure: Parallel grading: mean
quantiles and deviation

R is Raisins, M is Mecho, normalized against R1/M1.

Martin Mare$ Fairness of Time Constraints

Parallel grading is tricky — NUMA (Arcikam)

13r
121
11-

«-HE++4+

0.9+

0.8

R1 R2 R2' M1 M2 M2

Figure: Parallel grading on Figure: Parallel grading on
NUMA: quantiles NUMA: mean and deviation

R is Raisins, M is Mecho, R2’/M2’ uses node pinning.

Martin Mare$ Fairness of Time Constraints

Batch tasks — conclusions

What we have learned for batch tasks:

@ Variance of measured time is acceptably low.
@ The scheduler works fairly well, tuning makes things worse.
@ Sandbox overhead is reasonably low.

@ Execution time must be regarded as a random variable.
Repeat measurements if near the threshold.

Parallel grading:

@ Acceptable variance for #graders > #cores.
@ Pinning improves the situation somewhat.

Martin Mare$ Fairness of Time Constraints

Interactive tasks — problems

What about interactive tasks?

Regions — complex interaction between:
@ contestant’s solution
@ judge
@ sandbox
Each operation involves several context switches.

Bruce Merry [2010] compared performance under different
sandboxes (also on Regions). Wanted: more insight.

Martin Mare$ Fairness of Time Constraints

Interactive tasks — experiments

3.5¢

3.0

25 CBu_ Clu_Clb ABg Alg
CBg Clg Clr Clj ABuU

; li'ili ‘“ i

10r+

L L L L " L L

CBgCBu Clg Clu CIr Clb Cl] ABgABu Alg Alu Alo 0 2 4 6 8 10 12

C on Camellia, A on Arcikam, B is batch, | is interactive,
ubase, b ... allon 1 core, r... real-time, g no sandbox,
j is g pinned to 2 cores, o is u pinned to a NUMA node.

Martin Mare$ Fairness of Time Constraints

Interactive tasks — a surprising histogram

14 16 18 20 22 24 26

Figure: Histogram of the test Clu

Indeed, different test cases behave in a very different way.
So far, we do not have any theory explaining why.

Martin Mare$ Fairness of Time Constraints

Interactive tasks — different normalization

200/
150!
100}

50,

0.96 0.98 1.00 1.02

Figure: Test Clu normalized with respect to itself

Surprise again: Distribution similar to batch tasks.

Martin Mare$ Fairness of Time Constraints

Interactive tasks — conclusions

What we have learned:
@ Compared to batch version of the problem, interactive
version does not give realistic timing.
@ The sandbox does not contribute much to the variance.
@ Pinning to cores or to a NUMA node helps.

@ When we do not seek comparison with the batch version,
the interactive version can be considered fair.

@ Results differ from [Merry 2010], very likely related to
kernel improvements (2.6.30 vs. 2.6.37).

@ Still, we recommend avoiding interaction of this type when
the number of exchanges is large. Possible solutions:
shared memory.

Martin Mare$ Fairness of Time Constraints

Good bye

Send comments and suggestions to

mj@ucw.cz

Martin Mare$ Fairness of Time Constraints

