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Preliminaries

 Pankov, P. (2008). Naturalness in tasks for 

olympiads in informatics. Olympiads in 

Informatics, v. 2,115–121 – transform train 

to T but tail to be in H, called reversing

 Torii, R. (2008). Path transferability of 

graphs. Discrete Mathematics, 308(17), 

3782–3804 – necessary and sufficient 

condition for G in order that each given train 

to be transformable (or reversible) 
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Definition of the problem

 A train in an undirected graph G = (V, E) is a 

simple path p = x0, x1, …, xq of length q, x0 is 

the head. The free vertices with respect to p 

are V \ { x0, x1, …, xq }.

 A step of the train is a transformation  p → p’

where p’ is a simple path  p’ = x’, x0, x1, …, xq-1, 

where x’ is a free vertex with respect to p,    

(x’, x0)E.
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Definition of the problem (2)

 After the move, the train is p’  and the head 

is in x’. The free vertices with respect to p’ 

are  V \ { x’, x0, x1, …, xq-1 }.

 The length of the train is constant.

 The target is some vertex ω  V. The target 

never changes during the transformation.

 Without loss of generality, assume G is 

connected.
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TIAG

We call this task TRAIN IN A GRAPH, shortly 

TIAG.

Decision version
 generic instance: undirected connected 

graph G, a train p in it, and a target, ω

 question: can the locomotive reach the 

target.
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TIAG, optimization version

 generic instance: undirected connected 

graph G, a train p in it, and a target ω

 output: the minimum number of moves after 

which locomotive can reach the target, in 

case that is possible, otherwise some 

indication the target is not reachable.
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A YES-instance of TIAG
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A graph G and 

target ω.
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A train. Initially, 

there is no free 

path to ω.

First move. 

Now there is a 

free path to ω.

Fifth move. The 

locomotive 

reaches ω.
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General considerations

 The length of the train can be zero but in 

that case the answer to the decision version 

is trivially YES and the optimization version 

is solved by BFS.

 The only reason the train cannot commence 

immediately a travel along a shortest path 

towards the target is that its “body” blocks 

all such paths; recall that the train cannot 

intersect itself.
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General considerations (2)

 Ostensibly, that is a minimization problem.

 In fact, the problem is a maximization one: 

in the worst case, in order to get the head to 

the target, we have to find a long enough 

path to “store” the train’s body and thus 

clear a path to the target.

 Computing long paths is hard in general.
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Intractability results

 HAMILTONIAN PATH BETWEEN TWO POINTS

(HPBTP):

 generic instance: Undirected graph G,        

vertices u and v in G.

 question: Does there exist a Hamiltonian 

path with endpoints u and v in G?

 HPBTP is NP-complete (Garey and Johnson).

 HPBTP reduces to TIAG.
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HPBTP ≤p TIAG
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Let ‹G, u, v› be an arbitrary instance of HPBTP.

G

x

ω

Construct an instance ‹G’, p, ω› of TIAG 

u v

Add x, ω, and n-3 other new vertices, plus the 

shown edges.

z1 z2 zn-3

Place a train of length n-1The locomotive can reach ω iff it can reach a 

neighbour of v and v is free at this moment.

No path in G can be longer than n-1. If v is to be free 

at that moment, the part of the train inside G has to 

have length n-2. That implies H-path between u and v.

G’



NP-completeness of TIAG

 So far we have proved NP-hardness.

 The fact that TIAG  NP is not 

immediately obvious.

 We prove that for every YES-instance 

the locomotive moves along a path that 

does not contain any vertex more than 

twice.

 The fact that a succinct certificate exists 

follows immediately.
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TIAG on trees is trivial
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ω

Answer is NOAnswer is YES
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TIAG on other graphs

 Reversing the train in a complete graph Kn -

XV Akademickie Mistrzostwa Polski w 

Programowaniu Zespołowym, 2010

 Transforming the train to arbitrary vertex in a 

“vertex-cacti” – as well as we know that the 

task was included in one of the Russian Open 

Cup programming contest ??? 

 We consider the same task in a “edge-cacti” 

called simply cacti.

24 August 2016 Krassimir Manev, New Bulgarian University



Cactus Graphs (cacti)
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Definitions on Cacti (1)
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G
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G1

G2

the cacti G1 and G2 are the constituents 

of s with respect to u and v
s is a cycle, u and v are vertices in it.
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Definitions on Cacti (2)
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u

the fragments of G with respect to vertex u

are the connected components of G−u

G
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Definitions on Cacti (3)

 With respect to the train’s length q, any 

cycle of length ≥ q+1 is a long cycle.

 If there are no long cycles, the problem 

is as trivial as it is on trees: the answer 

is YES iff there is a free path between 

the head and ω initially.

 If there are long cycles, they are called 

U-turns of the train, giving a lot more 

opportunities.

24 August 2016 Krassimir Manev, New Bulgarian University, Sofia



Definitions on Cacti (4)

 The edges of a cactus are partitioned 

into tree edges and cycle edges in the 

obvious way.
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TIAG on Cacti (1)

 We solve the optimization version of 

TIAG in O(n) on cacti.

 Let the cactus be G and the train be      

p = x0, x1, …, xq.
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TIAG on Cacti (2)

 If x1 and ω are not in the same fragment 

with respect to x0 the answer is, the length 

of a shortest path between x0 and ω.
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ω

x0 x1 x2

x3
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TIAG on Cacti (3)

 The interesting case is if x1 and ω being in 

the same fragment G1 with respect to x0.
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ω
x0 x1

G1
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Subcase 1: (x0, x1) is a tree edge

 Let G’ be the connected component of  

G − (x0, x1) that does not contain x1.
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ω
x0 x1

G1G’
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Subcase 1: (x0, x1) is a tree edge

 If there is no U-turn for the train inside G’, 

the answer is ∞.
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ω
x0 x1

G1G’
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Subcase 1: (x0, x1) is a tree edge

 Else, the answer is the shortest U-turn inside 

G’ plus the distance between x0 and ω.
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ω
x0 x1

G1G’
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Subcase 1: (x0, x1) is a tree edge
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x0 ω

G’

s

the length of the U-turn

plus dist(x0, ω)
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Subcase 1: (x0, x1) is a tree edge

 There can be multiple opportunities to take a 

similar U-turn inside G’

 So we take the minimum over all long cycles 

in G’ of:

 the cycle’s length plus

 twice the distance between the cycle and 

vertex x0.
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Subcase 1: (x0, x1) is a tree edge

 That information can be precomputed: a 

modified DFS can discover in a single run, 

starting at x0, all long cycles and their 

distances to x0.

 Combination of one DFS and one BFS could 

make the implementation more easy
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Subcase 2: (x0, x1) is a cycle edge

 Further subdivision into subcases is 

according to the relative placement of the 

train and ω: 
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Subcase 2.1: ω is “blocked"
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x0

x1

x2

if ω is in a constituent of s below x1 or … or xb

the train has to move forward in order to free

a path to ω

s

xb

ω

it either can go directly to ω along s, provided

s is a long cycle (so it can “accommodate” the train)
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Subcase 2.1: ω is “blocked"
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x0

x1

x2

s

xb

ω

or it can make a U-turn in a constituent of s that

is not below x1 … xb

after the U-turn the train can go “backward”or go “forward” along s – that makes sense only

if s is not a long cycle 

s’
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Subcase 2.1: ω is “blocked"

 So, there are at most 3 possibilities:

 do not make a U-turn,

 make a U-turn and go backwards.

 make a U-turn and go forward.

 If a suitable precomputing is done, the 

minimum of all of them can be computed 

in a linear time

 The said modified DFS will do as a 

precomputing
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Subcase 2.2: ω is not “blocked"

 Now there is necessarily a solution to 

the decision problem
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Subcase 2.2: ω is not “blocked"

 However, the solution to the optimization 

problem is not necessarily the obvious one
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Subcase 2.2: ω is not “blocked"

 It can be more beneficial to perform a U-turn 

and then go backwards, if s is long enough 

and the train is short enough and there is a 

suitable U-turn
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Subcase 2.2: ω is not “blocked"

 The minimum of those two possibilities can 

also be computed in linear time using the 

results of the mentioned pre-computing 

 That exhausts all possibilities!
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Conclusions

 We have proved the NP-completeness of an 

interesting computational problem that has 

only been mentioned so far

 We have constructed a linear-time algorithm 

for it on cacti.  The implementation details are 

not as straightforward as they sound: the 

modified DFS (or DFS+BFS combination) is 

tricky.
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Conclusions (2)

 There are plenty of opportunities for further 

research:

 There are numerous other graph classes to 

consider, for instance, planar graphs. Many 

NP-complete problems remain so on 

planar graph. What about TIAG?

 The train movement can be made more 

complicated 
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Conclusions (3)

 Task was used in a contest for choosing the 

National team of Bulgaria in May 2013

 12 contestants took part

 Data was constrained as follow:

2 ≤ n ≤ 100000, 1 ≤ q < N

 The results are shown on the diagram of the 

next slide and demonstrate that the task is 

difficult even on cacti
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Conclusions (4)
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Thank you for your attention!

Any questions?
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