
Problem Solving,

Presenting, and

Programming
Tom Verhoeff

Dept. Math. & Computer Science

To be presented at IOI 2016

Some Background

• Involved in IOI from 1994 until 2007

• IS: website with historic data

• ISC: co-founder, chair

• IOI Syllabus, co-author, editor

• Teach math enrichment classes in primary school

• Weekly

• Focus on problem solving

• Classical problems + exotic/newer problems

− For references, see the article

/ Department of Math & CS

Nim

• Classical two-player game

• State: Several piles of items

• Move: Take one or more items from one pile

• End: Whoever takes last item loses

/ Department of Math & CS

Mathematical Analysis

• Known as impartial game

• Both players can make the same kind of moves

• Algorithm for perfect play is known

• Involves binary notation and nim sum (xor)

• Harder to teach in primary school

• So, look for simplification

/ Department of Math & CS

Nim Sum

• ≤ 1 pile with > 1 item: “easy” to win

• 3 = 011

• 4 = 100

• 5 = 101

• ⊕ 010 (nim sum)

• Lost if nim sum = 0

• Else: take from pile k with k ⊕ nim sum < k

• and leave k ⊕ nim items

/ Department of Math & CS

Simplified Algorithm, Part 1

• For each pile

1. Break it down into groups of size 1

2. Repeatedly merge two groups of equal size

3. This terminates when all group sizes differ

• 19 = //// //// //// //// + // + / 5 = //// + / 3 = // + /

• Find largest group size G with odd occurrence count

• If all even: lost

/ Department of Math & CS

Simplified Algorithm, Part 2

• Take 1 from any max-size-G group, say in pile P

• Split remainder of that group

• 18 = //// //// + //// + // + / + // + / 5 = //// + / 3 = // + /

• Continue taking from pile P such that all group sizes

have even occurrence count

• 6 = //// + // 5 = //// + / 3 = // + /

/ Department of Math & CS

Programming

• Not so convenient in imperative language

• Easier in functional language with patterns

• Wolfram Language

• Mathematica

• Free on Raspberry Pi, Intel Edison

• Free in the Wolfram Cloud

• www.wolfram.com/language

/ Department of Math & CS

Programming in Wolfram Language

• singletons[n_Integer] := Table[{1}, n]

• combine[{x___, a_, y___, a_, z___}] := {x, Join[a, a], y, z}

• combine[list_List] := list

• combineStar[list_List] := FixedPoint[combine, list]

• split[n_Integer] := combineStar[singletons[n]]

• split[position_List] := Map[split, position]

• split[{3, 4, 5}] -> {{{1, 1}, {1}}, {{1, 1, 1, 1}}, {{1, 1, 1, 1}, {1}}}

/ Department of Math & CS

Conclusion

• Presenting a solution can be a problem in itself

• Simple and insightful algorithm for Nim

• Exercise:

• Find algorithm when taking from one or two piles

/ Department of Math & CS

Questions?

/ Department of Math & CS

